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ON THE CONTINUATION OF THE IDEA OF HEAVISIDE
IN THE OPERATIONAL CALCULUS 1)

This paper is an extension of the classica_ methods of operational calculus /

with respect to theoretical assumptions, as well as to practical applications. The \

foundations of this method were published by the author in 1957 [1] 2). The paper _x

aims at a uniform treatment of operational methods adopted to different types _,_

of problems, such as the solving of differential and difference equations with

constant coefficients, Euler equations, difference-differential equations, Bernoulli ]

equations and other nonlinear equations. The presented method is based on the

fundamental notions of functional analysis and is a continuation of the_d_aJ

1. INTRODUCTION

Heaviside, a British engineer, is considered the originator of the

operational calculus, in spite of there being earlier papers by Cauchy

on this subject. Heaviside simply presented, in differential equations,
d

p = _- thus reducing them to algebraic equations and solving them by

algebraic methods. When criticized by mathematicians for the lack of

justification in this procedure, he would answer: "Why should I resign

from dinner only because I don't know the process of digesting."

Nowadays the operational calculus is evidently a fully justified
discipline. The modern interpretations of the operational calculus

largely depart from the original version of Heaviside's idea. They are

based on integral transformations, namely, the so-called LapLace
transformations.

In order to attain possibly the greatest generality of a given mathe-

matical method, it is important in the argumentation of the method to

make use of only essentially necessary restricting assumptions. It turns

out that the operational methods based on integral transformations do

not satisfy this postulate. They impose, for _nstance, restrictions con-

1) Reprinted by the kind permission of the Journal of the Franklin Institute

(Vol. 276, No. 5, 1963, pp. 411---440).
_) The boldface numbers in parentheses refer to the references appended to

this paper.



cerning the class of functions being transformed, and such restrictions,

as it appears, are not indispensary in the justification of the calculus.

In electrical engineering, this method can be a basis for broader than

hitherto conceived methods of analysis and synthesis of electric systems"

constructed of elements which constitute a physical realization of opera-

tors understood in a general way.

2. THEORETICAL FOUNDATIONS

2.1. Algebra of Operators

2.1.1. Determination of the Basic Operation

Assume that in a certain linear space X on the body of complex

numbers Z a linear operation T was determined that satisfies the follow-

ing conditions:

T (X) C X, (1)

T[ax 1 _- fix2] --_ a Tx 1 -_- flTx2, (2)

where a and fl are complex numbers, and xl and Xz are two arbitrary

elements of the space X. Such an operation is called endomorphism.

Owing to the condition (1), the operation T can be performed several

times in the space X. The n-fold operation T_[x] is determined by the
recurrent formula

T" [x] -_ T IT "-1 Ix]]; n = 1, 2, ... (3)

Assume also that the symbol T O will consistently denote the identity

operator possessing the following property

T O[x] -_ x. (4)

operator T o will also be written as theOwing to this property the
number 1:

TO--- 1. (5)

Assume that the set of the results of power operations xi = Ttx, consti-

tutes a system of linearly independent elements, and thus the following
condition is also satisfied

_ a iT i X ---- 0 _- a o -_ _1 _- "'" an ----- 0 or x = 0. (6)
i--0

where n is any natural number.



2.1.2. Polynomial Operators

Consider now the set P of polynomial operators

W(T):%4-a, T4- ...4-a nT"; a i(Z. (7)

For polynomial operators determine the equality, the sum, and the

product in a manner analogous for algebraic polynomials.

The polynomial operator (7) for which a0--al _-...----_n = 0 is

-called the zero operator and is written simply as the number zero.

The result of the operation W(T)x, determined by means of a poly-

nomial operator, is specified by the formula

W (T) x = _ a iT i x. (8)
i-----0

It may be noted that the following relations hold valid for two arbi-

trary polynomials WI and W_

W 1 x 4- W_ x = (W, 4- W2)x, (9)
wl (w_,x) = (w, W2) x.

Theorem 1. The set P of polynomial operators forms a commutative
ring with no zero divisors.

Proof: This is almost immediate. Since on the set of polynomial opera-

tors we have determined operations analogous as for algebraic poly-

nomials, the set P forms an Abelian group in respect of addition.

Moreover, the multiplication of polynomial operators is commutative,

and also associative and distributive with respect to addition. The set P

forms then a commutative ring. This has no zero divisors because of the

condition (6), as we have

Wx=O----W=O or x= 0, (10)
and

W1 We ---- 0 =---W1 -----0 or W_ _- O. (11)

Conclusion: The results of two operations W1x and Wzx, where x ( X,

x =fi O, are equal if and only if

W1 = W2.
In fact, if we assume that

W_ x _- W2 x,

then owing to the first of the relations (9)

(W, -- W2)x = 0; x :/= 0,

but, by virtue of (11) this equation is satisfied, if and only if

W, = W2.



2.1.3.RationalOperators

Since the ring of polynomial operators W(T) has no zero divisors,

we can complete it in a simple manner so that it constitutes a quotient

field by means of introducing rational operators in the form

P (T) % -4- _1 T + ... -k _n T n
Q ¢ 0, (12)

Q (T) -- flo + flit A- ... 4- flmTm'

where _l and fll are complex numbers.

The result of the operation

P
-- x (13)
Q

determined by the rational operator will be called the element y ( X

satisfying the equation

Px = qy. (14)

The operation (13) by virtue of Theorem 1 is unique, that is, for two

given polynomial operators P and Q and for a given element x ( X

there exists one and only one element y ( X satisfying Eq. 14.

It is worth noting that operation (13) determined by the rational

operator is not always feasible on the linear set X under consideration.

The infeasibility of this operation takes place when the operational Eq. 14
is not solvable on the set X.

If, for example, X is a set of functions integrable according to

Lebesque and determined on the real semi-axis (_, c¢), then the equation

Tx (t) ---- 1; t _ O, z (t) ( X

in determining the operation Tx(t) by the formula

t

Tx (t) = f x (0 dr
0

is not solvable on the set X, since it is required that the right-hand side

of the equation be equal to 1 for t _> 0, and this is impossible as the result

of the operation
f

Tx (t) -= ; x (0 d_
0

always represents a function which is equal to zero for t = 0. This

equation would be solvable in the case where X is a set of distributions.

We may note that a sufficient condition (though not necessary) of

the existence of the operation determined by the rational operator (12)

is the condition fl0 =/= 0.



It caneasilybeprovedthat, with the assumptionof the existenceof
givenresults,thefollowingrelationshold:

P P
P-- [_xl + _x2] = c__-x, + {_-x2, (15)Q

P1 Pz PI Q2 + P2 Q1 (16)
q--_ x + _x = Q, .Q_ x,

PI[P, ] Pt'PzQ_ _x - Q,.Q_X. (17)

P

These relations signify that the rational operator -Q- is a linear oper-

ator and that we can add and multiply rational operators in a formal

way just as algebraic fractions.8)

The field of rational operators is then isomorphic with the field of

rational functions. Owing to the existence of this isomorphism the

rational operator (12) has a unique expansion into simple fractions of the

form

1

(T -- _)k , (18)

which fact is of basic significance in the applications of the operational

calculus.

1
Of special importance is the rational operator _7. This operator

will be also denoted by the symbol T-*. Because of the above denota-
tion we have

T i T -i _- T -i T i = 1.

Generally speaking, the operators P and Q, the product of which is

equal to unity (and therefore, the operators T _, T -t, too) will be called

inverse operators. The operator T will also be denoted by letter p

1
P- T" (19)

s) As a result of the operation_ P x we can also understand an ordered pair
Q

%

(_-, X) for which we assume Eqs. 15---17 as axioms. Thus Eq. 14 will always have
$

a unique solution on the set of pairs , x . Such a generalization is not, however,

necessary for the operational culculus.



2.1.4. Generalized Operators

Consider now a more general polynomial operator

W (T) = A o + A1 T + ... + An T n, (20)

where Ao, A1,... An are assumed endomorphisms commutative with the

endomorphism T.

An operator A t such that reduces any element y of the set X to

the zero element, will be spoken of as the zero operator and denoted

as A j= 0. If then

Aiy = 0 with y _e 0, then A i ---- 0. (21)

The polynomial operator (21) for which A1----A2----...= An----0,

will also be called a zero operator, and denoted as W ---- 0.

Assume that the results of the operation xi = A',T_x constitute

a system of elements linearly independent in the sense that

_AiTix= 0 =Ao=A1 .... =A.=-O or x= O. (22)

i=0

In determining arithmetical operations on the operators (20) simi-

larly as for algebraic polynomials, the set of these operators will evi-

dently constitute a commutative ring having (owing to assumption (22))

no zero divisors. This ring can therefore be generalized to a quotient
P

fieldin a similar manner as before, so that the rational operators -Q- will

be obtained. For operators of the form (20) the Formulas (15, 17) still

hold, by reason of carrying out algebraic operations on rational operators

in a formal way as on algebraic fractions. In particular, there can take
P

place the expansion of the generalized operator _- into simple fractions

of the form

B

-(1--_-C-T) k , (23)

where B and C are endomorphisms, and k is a natural number.

Generalized operators can, among other applications, be used in

solving differential equations of the form

x in)(t)+ A, x (n-l)(t)÷ ... q-A nx (t)= _ (t), (24)

where A, .... A n are continuous endomorphisms, and the functions

x(t), a(t) are continuous functions of the real variable t with values

from the topological linear space X. Such equations were considered in

(6and 7).



2.2. Analysis of Operators

2.2.1. Real Operators

Assume now that X is a topological linear space, such as the type

of L* Fr6chet. The convergence of the sequence x, in the Fr_chet space

is determined by the following axioms:

1. For certain sequences x n formed from the elements of the

" space X, the element x C X is set into one-one relation and is called

the limit of the sequence xn:

x = lim x, or x, --->x. (25)
n

The sequences possessing a limit are called convergent.

2. Each sequence x, possesses at most one limit.

3. If x,, :-- x for n -----1,2 ..... then lim x, ---- x.
n

4. A subsequence of the sequence convergent to x is also con-

vergent to x, that is, if x = lim Xn and ml <m2 < .... then also
n

x = lim Xm, •
I1

5. If each subsequence x,,, of the sequence xn contains a subsequence

Xmk, convergent to x, then x ---- lim xn.
n

In addition to the above axioms, we accept also the following condi-

tions of continuity:

xn'--_ x' Y"--> Y ;_ x_ + Yn--> x ÷ Y' (26)

X n _ X, _'n _ O; __ _n Xn _ OcX.

The notion of the series formed from the elements of a topologi-

cal space is defined analogically as in the classical analysis. A limit of

the sequence of partial sums is called the sum of the series. A series is

called convergent, if the sequence of its partial sums has a limit on the

set X.

Let us now define the endomorphism T in the topological linear

space X, that is, an operation satisfying the conditions (1) and (2).

Assume, moreover, that this endomorphism satisfies the following addi-

tional conditions:

oo

_ _i Ti x -_ 0 _- o_0

i=O

lim Tx, = T lim x,, (27)
n n

= _ .... = _i .... = 0 or x = 0 (28)

where ai C Z and x (X, that is, the condition of continuity and of

linear independence.



Considernowthesequenceof rationaloperators
1 ia_n T

P_ (T) = ' (29)
Q. 2 fl,,T' "

i

P.
The sequence _ (T) will be called convergent to the rational opera-

P

tor _- (T).

_- P Pn Plim (T) = _ (T) or _ (T) --> _- (T),

Pn
if and only if the functional sequence _ (z) of the complex variable z is

P

almost uniformly convergent to the rational function Q- (z)

P. P

Qn (z) =>-Q (z).

It is worth noting that the convergence thus defined satisfies the

-axioms 1--5 of the convergence in the topological space, and also satisfies

the conditions of continuity (26).

P.
The sequence of operators _- (T) will be called a basic sequence, if

P.
the function sequence _ is almost uniformly convergent to the function

F(z) which need not be rational

P" (z) => F (z).
Qn

Definition: A class of basic sequences of rational operators un ---- P"-(T)

determining uniquely the function of the complex variable F(z)

-= lim P"
._ -_(z), (by defining the equality of the sum and the product

analogicall F as for the function l_(z_)) is called a real operator and is

denoted by the symbol F(T). We then have

P. P.
(T) ._ F (T) _ _ (z) =7 F (z). (30)

The set of real operators will be denoted by 1_.

Subtraction and division of real operators are defined as inverse

operations in relation to addition and multiplication, and the con-

10



vergence of the sequence of operators F,,(T) is understood in the sense
of the divergence of the basic sequences F,(z). From the above accepted

assumptions a conclusion immediately follows, namely, that the set of

real operators 1% forms an isomorphic complete space with a certain subset

of the complex variable function. The space 1% is a topological linear space

" of the L* Fr6chet type.

The result of the operation F(T)x:

y : F(T)x, (31)

which is determined by means of the real operator F(T) '_-_.(T) will

be called, an element y of the topological space X, which satisfies the

equation

y ----lim yn = lim P", --_x; x,y,y, CX, (32)

Pn Pn
with the assumption that -- --+ F _ _ x -+ Fx Cx.

Qn Q,

Of course the operation (31) is not always feasible on the set X.
In this connection we shall determine sufficient conditions for the feasi-

bility of this operation.
In order to formulate such conditions, consider a particular case

when X is a locally convex space with the topology determined by means

of the sequence of pseudonorms tlxllk that is, non-negative functionals

satisfying the conditions:

il) llXllk----0 when x = 0;
(ix) from the condition Itxllk----0 for k = 1, 2.... it follows that x----0;

(i3) Ilx 4- Y]Ik < II.:Cilk4- ]lyIlk; x, y Cx;

II ,xl!,,= I ,I" IJxllk; CZ,x CX.
With the metric

2(x, y) ----- _-min (1, Ilx -- Yilk) (33)

k=i

the space X is a topological linear space.

Such a space is particularly important in practical applications of the
method discussed.

The pseudonorm of the operator T will be expressed by

]lWllk----sup IITxHk. (34)
Ilxllk<l

The operator T will be spoken of as essentially bounded if

n

lim I/liTnllk = 0; k ----1, 2, ... (35)
/1

11

t



Theorem 2. If the endomorphism T is an essentially bounded operator

Pn P_ P_
and there is x0 (X such that --x----- x0 and lira --(z) is a holo-

Qn Q_ ,-_ Q,*

morphic function in the neighborhood of the point z ---- 0, then the opera-

Pn

tion F(T)x determined by means of the real operator F(T)_Qn (T) is.

feasible on the set X.

PZ
Proof: The limit of the sequence Yn Q_ x 0 is the sum of the power

series of the operator T. We have

2 2 2
Iill ,k < [[Yi TixoIIk < [7i] [ITi]lk I[Xo[I k<Mk []Til[k,

i=0 i=0 i_0 i=0

k = 1,2, ... ; rl _r, (36)

where r is the radius of convergence of the series _' _,_z_. Then, if the
;=0

operator T satisfies the condition (36), the sequence y, has the limit on

the set X and hence follows the validity of the thesis of Theorem 2.

It can be noted that the thesis of Theorem 2 is also satisfied, if

i __

lim V IIT'llk _ rl dr; k = 1, 2, ...
l

In this case the convergence of the sequence W,(T) does not imply

though the convergence y, ---- W_(T)x, which is always true for essen-

tially bounded operators and which is the condition of feasibility of the

operation determined by means of the real operator (30). (Con-

dition (32).)

An essentially bounded operator, such as a Heaviside operator, for

which X is a set of the functions x(t) that are continuous (or integrable)

in each interval [0, to] of the real semi-axis and

t

Tz (t) = f x(0 d_. (37)
0

The pseudonorm in this case is specified by the formula

IlXllk = sup Ix(t)l; k ---- 1, 2 .... (38)

The essential boundedness of the Heaviside operatar T follows

readily from the Cauchy integral
t

1 ( (t -- _)'-_ x (r) d_. (39)Tix(t) _- (i " 1)!
,/

0

12



The convergenceimplied by the sequenceof pseudonorms(38) is
identical with the convergencealmostuniform. Thelinear independence
in the senseof (28)for Heavisideoperatorsresultsfrom the Titchmarsh
theoremconcerningconvolution.

From the formula (28)it followsthat a set of real operators has no

zero divisors, that is

F(T) x---- 0 -- F(T) = 0 or x = 0. (40)

The correctness of relations analogous to (10) can also be easily

proved.

In the defining real operators the approximation method in the sense

of Pad_ is very useful.

2.2.2. Calculation of the Results of Operations by the Iterative Method

Consider the operat{onal equation

y -- CTy = 1, (41)

where C and T are two assumed endomorphisms.

In accord with the definition of the rational operator, this equation

determines the result of the following operation

1
Y = 1 -- CT (1). (42)

Since Eq. 41 does not always have a solution in the domain of

elementary functions, a convenient way of determining the result of the

operation (42) is using the iterative process.

Thus, take any element Y0 ( X and, knowing the operation E1T,

from the equation

Yl -- CTyo-_" 1

calculate the element Yl. Continuing this process we get

Y'2 _ CTyl -_ 1,

Y3=CTr_.+ 1,
............ (43)

Yn = CTy_-I + 1.
, o • , • ° . , , • , °

Therefore the element Yn can be expressed by the initial element

Y0 as follows

Yn ---- CnT"yo + Cn-I T"-I + ... + CT + 1.

If the above iterative process is convergent in the sense of the

topology assumed for the space X, then, assuming for simplicity that

Y0 ---- 1, we shall obtain a power series of the operator CT convergent to y.

13



In this casethe following expansionof the power operator(42)is then
correct

CO

1 -- CT _ Ci Ti" (44).

i=0

From the expansion (44),there follows a more general relation

i _2(k+i--l)ciTi, (45)(1 -- CT) k i
i--0

which is obtained by raising both sides of Eq. 44 to the power k. The

approximate value of the operation determined by means of the rational

operator (44) can, then, be found by calculating the finite number of

terms in the series, that is,

n

(1 CT)k x ------- 1

i=O

Such a procedure is equivalent to the calculation of a finite number

of iterations. The Formulae (45) and (46) are of course still valid for

the case when the endomorphism C is replaced by a complex number _.

2.2.3. Operations in the Space of Operators

Since the set R0 of real operators constitutes a linear space, we can

determine on this set the endomorphism T1

T1 (Ro) C Ro, (47)

T 1 [aF 1 -_- _F2] _--- aT 1 F 1 -- _T 1 F2, (48)

F1, F 2 ( R 0 ; ¢¢,fl (. Z, (49)

satisfying the conditions established generally in the preceding chapters.

If we then impose on the endomorphism T1 conditions ensuring the

existence of the results of the operation F(')(T1)[R0],we would be able to

construct a new space R, of the operators F_')(T1). Of course we can

continue this procedure any number of times obtaining thus, spaces

R2, R 3.... , R,,....

On the set R0 we can determine a differential operation mapping the

space R0 onto itself and satisfying the conditions:

D (F1 F2) : F1 D (F 2) _- Fe D (Fj), (50)
D (_F 1 + _F2) _ aD (F 1) _- flD (Fe).

An example of this type of operation can be a difference operation

14



determined on the set of sequences Fn of operators by means of the

Formula
k

AkF. = _(-- 1)" k!r !(k -- r) ! Fn+k-,. (511
" v=0

Defining the endomorphism Tx by the Formula

n--1

T1Fn _--- 2 Fro, (52)

m=0

we can solve by way of operators difference equations defined in the

space of operators.

Another example of a differential operation can be the differential

operation of the function F(4) of the real variable 4 with values from
the space R0. The derivative F'(4) can be then determined by the

isomorphism with the derivative F_ (z, 2) of the complex variable
function dependent on the real parameter 4. The properties of the

p

derivative Fx (z, _) are thus transferred to the derivative F'(4). It is
therefore possible to define a differential equation for the space of the

function F(2) owing to the solution of partial differential equations by

way of operators.

Example. The equation

ut_ -- _u -----0, (53)

with the boundary conditions u(x, 0)= 0, u(0, t)= f(_) is solved by

determining the endomorphism T by Eq. 37.

If we set F(4)f ----u, the partial Eq. 53 is tranformed into an ordinary

equation in the space R_

(pF'_ -- ar) ] ----0 ; F (0) = I = 1,

which yields the result

F (4) -_ e ta/p)_-_ ea_T,
and

eaST

U _ ea'ITf.

The result of this operation can be simply obtained by expanding
into a series power of the operator T.

3. APPLICATIONS

3.1. Heaviside Operators

Assume that the set X is a set of functions ](t) integrable in each

interval [0, to], and determine on this set the operation Tf(t) as follows:

15



f

Tf (t) = f f (T)dr. (54)
0

From the Definition (54) it follows immediately that the operation

Tf(t) is additive and homogeneous, and the relations (2) are therefore

satisfied. It may also be noted thas this operation satisfies the relation

(6), and consequently the set of polynomial operators W(T) forms a

ring with no zero divisors.

Substituting Eq. 54, for the function f(t), its derivative, we obtain

and

1
or introduce _ = p

Tf' (t) = f (t) -- f (0)

1 1
f'(t)=34 f(t)-- 34 f(0)

The above formula

derivatives of higher orders, obtaining then

fl' (t) = p2 f (t) -- p2 f (0) -- pfl (0),

v--1

f(") (t) = p" f (t) -- _ p"-" f(") (0) ; v = 1, 2, ... ,
n=0

f (t) = pf (t) - pf (0). (55)

can, by simple induction, be generalized to

(56)

it being necessary, of course, to assume the existence of the derivatives

of the function f(t) to the order of inclusively.

1.
The operator p =_-is called the differential operator and p-1 = T --

the integral Heaviside operator.

Making use of Eq. 56, we can solve linear differential equations with

constant coefficients in a way analogous to the case of the method

based, for example, on Laplace transformations.

In the applications it is convenient to use the following theorem

well-known in the operational calculus.
P

Theorem. If h(t) is the result of the operation_ over the unit function

P

h (t) = _ (1),

then the result of the operation over any integrable function f(t) can

be expressed by means of the integral

16



t

_(t)] =- _- h(t -- _)f(v)dv. (57)

0

The proof of the above theorem can be found in the literature.

The integral Eq. 57 is usually called the Duhamel integral. It should

be emphasized that the method presented in the present chapter is

more general than the method of Laplace transformations, in the sense

that it does not impose restrictions to the "speed of increase" of the

function f(t).

The results of certain operations can be calculated directly from the

definition formula. Assuming for instance, in Eq. 54 that f(t)= e at,

we find that

t

Te st= ;e_dr= l_(eat-- 1)
• ¢4

0

and

(1 -- aT)[e _t] = 1

and finally after substituting p = T -1

P (1)-= e at . (58)
p--a

It is convenient to agree, in the case of operations performed over

P(P) P(P) Such an
the unit function, to wi'ite, instead of _Q_j (1), simply Q(p) .

agreement being made, Eq. 58 would be written as

P -- e at. (58a)
p--a

There are no obstacles to apply the present interpretation of the

Heaviside calculus to the problems of partial differential equations.

To this end it is necessary to introduce

operators, namely,

a few irrational (irregular)

e__p ; e_a/5; i/p ; _=--.1 (59)
l/p

The application of this method to the problem of partial equations

would also have advantages over the method of Laplace transforma-

tions, since it would be possible, for example_ to carry out proofs of

uniqueness of the solutions of these equations.
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3.2. Operators of Euler Equations

Assume that the operation Tf(t) is determined on the set X by means

of the following formula

I _-_-)dT" t_l

/--
( 0; t_l.

(60)

It can be proved that the definition determined in this way satisfies

the conditions established in Chapter 2.

If in the defining formula (60), in lieu of f(t), we substitute the func-

tion tf'(t), we shall obtain

Ttf (t)-_ _(t)-- _(I),

and after substituting T-' _- p:

tf(t)= pf (t)-- Pl(i). (6i)

Generalizing the obtained dependence to cover derivatives of higher

orders we get the following Formula 4)

t "+11(n+l) (t) = p (p -- 1)... (p -- n) I (t)

-- p(p -- 1) ... (p-- n)f(1)-- ... (62)

-- p(p -- n)fln-1)(1) -- pf(') (1)

where the number n is a non-negative integer.

Let us now calculate the results of certain simpler operations.

1. Assume in the defining Formula (60) that f(t) ---- 1; then

t

T(i)----p-'(i)= f -_-=lnt. (63)
1

Performing the operation T(1) several times we get generally

ln" t
p-_(1) -----p-_ ------ (64)

_! '

where v is a natural number and in _ t denotes the simplified version

of [In t]"

4) The above formulae can a'lso be derived on the basis of the Mellin trans-
formation; however, by reason of the restrictions imposed on the class of the
functions $(t), the obtained generalization is less extensive.
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2. Assumein Formula (60)f(t)----t% then

t

T(t _)-- z_ld_-:- -= t_-1),
0c

1

after elementary transformations and after substitution p --- T-'

t a- P . (65)
p--_

By means of the operation presented in this chapter, it is possible

to calculate efficiently the Euler differential equations. As is well

known, the Euler equation is called an equation of the form

* a0 t n fen) (t) + ... + an_l tf (t) ÷ a, f (t) -- _ (t),

where a0, "", an_,, a, are arbitrary constants and _(t) is a given func-

tion of the real variable t.

The example given below illustrates the manner of solving these

equations by the discussed operation.

Example. Determine the function f(t) satisfying the equation

t 2 f" (t) -- f (t) ----in t

and the conditions f(1) ---- 0, f'(1) -----1.

Solution: By virtue of Eq. 62, we get the following operational equa-

tion

p(p-- 1)f(t)-- f(t) = p[1] +lnt.
Consequently,

P + P (ln t).
](t)-:- P(P--1)--I p(p--1)--I

Further, on account of Eqs. 63 and 65

f (t) = a2 -- 1 (t°' -- 1) + 2 _ 1 (t_2- 1) -- ln____t_t

1 +_/5
where al,a2 -----_- - -_-"

3.3. Operators of Difference Equations

3.3.1. Difference Equations with Constant Coefficients

It is possible to solve linear difference equations with constant coeffi-

cients in a simple manner by the method of the operation Tf(t).

From the defining formula

TAr (t) : f (t) -- f (0), (66)
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where
hf (t)= f(t-_-_)--f(t),

after substituting T -1 ---- p we obtain

Ai(t)= pf (t)--pf(O). (67)

Generalizing the above formula we shall have

n--1

Anf(t) = pnf(t)- _pn-_A_f(0) , (68)
X

v=0

where it is assumed that h°f(0) ---- f(0).

It is worth noting that the above operation -- contrary to all the-

operations discussed earlier -- is not a unique operation. On the other

hand, the following can be proved.

Property. If two functions fl(t) and f2(t) satisfy simultaneously the

equation T[hf(t)] = x(t):

T (All) = x and T (A)¢2)---=x, (69)

then the difference of the function f_(t) and f2(t) is a periodic function

with the period _.

In fact, if we assume that the functions fl and f_ satisfy Eqs. 69,

then, on account of the linearity of the operation T(f):

T (AI1 - A/e) = 0;

but it follows from the defining formula (66) that the above equality

implies

AIl- Af,, = 0,
X

that is

where

A (f,--re)= AN (t)----N (t+ )_)- N (t)---0,
i I

N (t)= fl(t)--)¢e(0.

The function N(t) is then a periodic function with the period _.

On account of this property the results of the operation discussed

in the present chapter are "unique" with the accuracy to periodic func-

tions with the period 2. It should be emphasized that this property of

the operation Tf(t) is a natural feature of all difference operations de-

fined on the set of continuous functions. The uniqueness of the opera-

tion Tf(t) could be obtained for example, by confining the domain

of the operation Tf(t} to a set of step functions, or by assuming that

t=0, 1, 2, -...
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and

Let us now calculatethe resultsof certain simpleroperations.
1. Assumethat in the defining formula (66)f(t)= (a+ 1)tn, then

A] (t) = (_ + 1) (t+_/_ -- (_ + 1) tn ----a (_ + 1) tn

and finally

and

.

a(¢_+ 1) tn--p(c_+ 1)v_-p.1

(_ + 1) tn -- P
p--a

Assume that in Eq. 66 f(t) = t, then

hi(t)= t + 2- t = 2
2

(70)

t
p-1 (1) = _.

Generalizing the obtained dependence, we shall readily arrive at the

following formula

P-V(1) = _-v [2-) ' (71)

where the expression denotes the so called "generalized power"

which is important in the difference calculus; it is defined by

(_)(_'= _(2--1)(_--2)... (_--v _- 1). (72,

It may be noted that for the generalized power, the following
formula holds

( t / ¢_) [ t _(_-1)
/ 1 , (73)

which resembles differentiation of an "ordinary" power

For the results of difference operation, it is evidently possible to set

tables analogous to tables used in the method of Laplace transformations.

The application of the discussed operation to the solution of differ-

ence equations is well illustrated by the following:

Example. Find the solution of the difference equation

h 2 f (t) - 3Af (t) ÷ 2] (t) ---- O,

satisfying the initial conditions

3f(0) = 0 and h3f (0) = 1.
2
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Solution. In view of Eq. 68, instead of the difference equation, we

may solve the following operational equation

p2 f(t)- 3pf(t) + 2f(t): pl.

Then

P _ P
f(t) = P _ 2 p--1

and on account of Eq. 69:

f(t) = 3v_ -- 2 tn.

3.3.2. Difference Equations with Variable Coefficients

This operation cannot be derived by means of the Laplace trans-

formation. Consider, for example, the equation

zAy (x) = _ (x).

This equation with the assumption of the initial condition determines

uniquely the function y(x). Consequently the Formula

Tq_ (x) = y (x) -- y (1), (74)

determines the endomorphismT. Thereby we derive a method by

which it is possible to solve interesting difference equations with variable

coefficients, namely equations of the type

ao(x + n2) ... (x + 2) xhn+ly + ... ÷
l

+ an_l (x + 2)xA2y + an xAy + a,+, y = f (x), (75)
2

where _ is the given real number and a0,'", a,, an+, are arbitrary
constants.

By substituting the defining formula (74) T-'--p we get

xAy = py -- py (2). (76)

It becomes evident that the above relation can be generalized to

differences of higher orders, obtaining then

(x + 2) xh2y = p (p -- 4) y -- p (p -- 2) y (2) -- 2pAy (2), (77)

and generally

/-[ (x + i2) An÷_y (z) = (p -- i_)y --
i=0 i=O

- p(p- i2) y(2), (78)
1

_-=0 i=_+1

where it has been assumed that for i > n
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/_p (p -- i,_)-_ p.
i=_+1

Now calculate the result of the operation

P (1). (79)
p--a

Note that the result of the operation (81) is the function satisfying

the equation

xAy (x) - _y (x) = o (80)
X

and the initial condition y(),) = 1.

The above equation can be solved for the "discrete" values of the

independent variable x:

1_, 2_o,3_, ..., k_, ...

Rewriting Eq. 82 in the following equivalent form

gives the equalities

(y(x+_)---- 1-5_- y(x),

y (2_.) ---- 1 -5 y ()_),

y (3,l) = (1 -5 _-) y (2_), (81)

. . o . o o o . . . . o o o . • o o o .

As a result of multiplying the above equalities by sides, we shall

have, for the initial condition y(x) = 1:

x--1

p _ _-"
(82)

f_l

The result of the above operation is expressed especially simply in

the case when _ ---- 4, then we obtain

_P = z. (83)
p--/

Notice that the result of the operation

p-1 (1)
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is thefunctionsatisfyingthe equation
1

Ay(x)= --; y (2) = 0.
2 X

It is worth noting that this equation has no solution in the set of

elementary functions ([8], p. 311).

A way of practically utilizing the discussed operation is illustrated

by the following:

Example. Solve the difference equation

(x÷l)xA 2y(x) - 2xAy(x) + 2y(x)= O; x_ l,
2

with the initial conditions y(1) = 0, Ay(1) ---- 1.

Solution,. Making use of Eqs. 76 and 77, instead of the difference

equation, we solve the following operational equation

p(p-- 1)y -- 2py + 2y = pl.

Accordingly

P P P

Y= p(p-- 1)--2p+2 =p--2--p--1

and by virtue of Eqs. 72 and 83

X--1

t=l

3.4. Operators of Difference-Differential Equations

Consider the difference-differential equation of the form

a0y(")(x+n)+ ... +a,_ ly'(x÷l)+a.y(x)--0 (84)

where a0,'", a ,, a, are arbitrary coefficients.

By writing Eq. 84 in the form

y("_(x + n) = ¢ [y (x), y' (x + 1).... y(n-l_(x + n - 1)],

we can easily notice that if, respectively, in the intervals [0, 1], [1, 2],

• .., In- 2, n- 1] we assume the continuous function y(x) and its

derivatives y'(x), °.., y(n-1)(x), thereby on the entire semi-axis [0, oo]

there will be a uniquely determined continuous function y(x) satisfying

Eq. 84. On this account, in order to obtain uniqueness of the solution of

a difference-differential equation it does not suffice to assume the values

of the functions y(x) and the derivatives y(_)(x) in a point, but it is

necessary to impose the plot of y(x) and y(_)(x) in unit intervals [0, 1],

• ..,[n- 2, n- 1].
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Assume that X is a set of the functions y(x) which are continuous and

integrable over the entire real axis x. On this set we define the linear

operation

Ty' (x --}-1) ----y (x) -- y (0, 1), (85)

where y(0, 1) denotes the continuous function determined by

y(O, 1) = ly(x); 0_x_l
/const ; x _ 0 ; x _ 1.

Substituting in the defining Formula (85) p = T -1, we get

y' (x + 1) = p[y (x) -- y (0, 1)1 = py (x) -- py (0, 1).

weGeneralizing Eq. 86 to derivatives of higher orders,
find the following relations

y" (x + 2) ----pe y (x) -- pe y (0, 1) - py' (1, 2),
....o..o ....... oo.°., o. o....o o .

_-1

y_') (x ÷ v) ----pv y (x) -- _ p_-" yC,)(n, n ÷ 1),
n=0

(86)

shall easily

(87)

where y(n) (n,n + 1)

jy(n_(x) ; n _ x _ n + 1(n, n + 1)
[const; x_n; x_n + 1.

1. Calculate the results of certain simpler operations,

P (1)-_ P(a,x). (89)
p--a

We can easily notice that 5)

P (a, x) ----_7(x) + _ (x -- 1) _7(x -- 1) + as (x - 2)22_ _ (x - 2) ÷ .... (90)

For the function P(a, x) is the solution of the equation

y' (x -}- 1) -= ay (x) (91)

with the initial condition y(x) ----1; x ( [0, 1].

2. Calculate now the results of the following operations

pe
a -P_p___ a2 [1] and p_ + as [1]. (92)

Thus, by introducing the denotations sin r(a, x) and cos r(a, x) for

the following continuous functions

denotes the continuous function determined by

(88)

_) The function _(x) is a step function:

1; x_0,_] (x) = 0; x<0.
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sin r (_, x) -- P (ja' x) -- P (-- j_, x) (93)
2j

cos r (_, x) ---- p (j_' x) -_ P ( - ja, x)
2

then by breaking the complex operations (92) into simpler operations

of the type (89), we shall readily obtain

a p__%,, (1) ---- sin r (a, x),

(94)
pe

pe ÷ ae(1) = cosr(%x).

The functions sin r(a, x) and cos r(a, x) are of particular importance

in the problems of difference-differential equations. It can be noted

that the above functions satisfy the relations

sin' r (_, x + 1) ----a cos r (_, x), (95)
cos' r (a, x + 1) = -- _ sin r (a, x),

resembling the differentiation of the trigonometric functions sin ax and
cos 0¢x.

The continuity of the functions sin r(a, x) and cos r(a, x) results

directly from Definition (93). The following relations are then valid

sin r (_, n -_- O) -----sin r (c_,n -- 0), (96)
cos r (_, n + 0) = cos r (_, n - O),

where n is a natural number.

It also follows from Eq. 93 that

sin r (a, 0) -= 0 ; cos r (a, 0) -= 1. (97)

A practical way of utilizing the results given in the present section

is illustrated by the following:

Example. Solve the equation

y'" (x + 3) = 2y" (x + 2) + 9y' (x + 1) -- 18y (x) -- 0

with the initial conditions

y (0, 1) = y' (1, 2) ---- 0 ; y" (2, 3) ---- 1.

Solution. Making use of Eq. 87 gives

pay _ 2pe y + 9py-- 18y = pl.

Accordingly

p 1 p 1 pe 2 p

Y--p3_2pfW9p_18-- 13 p--2 13 peW32 13 p2___3 e,
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Therelationsderivedabovemakeit possibleto apply the operational
methodin certain simpler nonlinearproblems.

1. Directly from thedefiningFormula(98)gives

p-_(1) = g_(x) (104)
v!

In fact, assuming in Eq. 98 that y(x) = 1, we get

x

T (1) j g' (_) d_ = g (z) -- g (0)
0

and because of the assumption g(0)= 0:

T (1) = p-i (1) = g (x). (105)

Generalizing the obtained result we get Eq. 104.

2. Calculate the result of the operation

p P_ 4(1).

Substituting in Eq. 98 yl-a(x) = e_aCx), we obtain

x

re_g(x) = f e_g(')g'(})d$ -=- ½(e _(x) -- 1),
0

and hence, after elementary transformations,

e_g(x) -- P ( 106)
p__"

From the above formula it is clear that the function being the result

of the operation P- (1) is dependent on the weighting function g(x).
p

Assuming that g(x)= x, we shall get a well-known formula in the

operational calculus, defining the function e _z as a result of the operation

performed over a unit function. If in another particular case we im-

pose g(x)= In x, then the formula established earlier will be obtained

x _ ----- P • x_ 1
p--_'

which was derived for the operators of the Euler equations.

Finally, if we assume that g(x) = in tg + _- ,whieh

1
to g'(x) = -- , hence, another formula

COS X

[ x _ _ P (107)

corresponds
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andby virtue of Eqs.89and 94

1 1 2y (x) = P (2, x) -- _ cos r (3, x) -- _ sin r (3, x).

3.5. Pseudo-Nonlinear Operators

Let X be a set of continuous functions y(x) determined on the real

semi-axis (0, _). Determine on this set the following operation

x

T (y)= f y(y)g'(V) y ----y(x), (98)
0

where g(x) (weight function) is a continuous and integrable function

given in advance, and satisfying the condition g(0) ---- 0.

The above operation is, of course, a linear operation, and therefore

satisfies the relations (2). It can be shown that it also satisfies the

other conditions established in Section 2. The operator T determined

by Eq. 103 will be called the pseudo-nonlinear operator.

Assuming that the function y(x) is an integrable function, then by

Eq. 98 we shall get

1

g, (x)- f, Y'_ = P](Y)- Pro, (99)

where f0 = f [y(0)] = ](y)I_--0"
In further considerations we shall confine ourselves to the case when

](y) = yl-a, where a is a real number different from unity.

Owing to the evident equality

[yl-, (x)]' (1 a) y-a y, 1 ---_ -- -- ay' (100)
y"

we shall get

1 1 1 1
y' = - py_-" -- -- py_-"(O) (101)

1 --_ 1 --ag' (x) y_

where p = T -1.

Formula (101) holds for any a 5/= 1. In a particular case, such as

when a = -- 1, we have

1 1 2
g-_)) yy' = _ py -- -_py_ (0). (102)

In another particular case, namely when a --7

1 1 y, _-- 2p _/y-- 2p 1/y--(O). (103)
9'(x) Vy
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Therelationsderivedabovemakeit possibleto apply the operational
methodin certain simpler nonlinearproblems.

1. Directly from thedefiningFormula(98)gives

p-* (1) = g" (_) (104)
v!

In fact, assuming in Eq. 98 that y(x) = 1, we get

x

T (1) = f g, (_) d_ ---- g (x) -- g (0)
0

and because of the assumption g(O)----O:

T(1) = p-' (1) = g(x). (105)

Generalizing the obtained result we get Eq. 104.

2. Calculate the result of the operation

p P 4(1).

Substituting in Eq. 98 yl-a(x) = e_g(z), we obtain
x

f 1 (e_g(x) _ 1),
0

and hence, after elementary transformations,

e_g(x) -- P (106)

From the above formula it is clear that the function being the result

of the operation P (1) is dependent on the weighting function g(x).
p--_

Assuming that g(x)= x, we shall get a well-known formula in the

operational calculus, defining the function e_z as a result of the operation

performed over a unit function. If in another particular case we im-

pose g(x)= In x, then the formula established earlier will be obtained

x_= - P " x_l
p--2'

which was derived for the operators of the Euler equations.

Finally, if we assume that g(x) = In tg + _ ,whmh

1
to g'(x) = , hence, another formula

COS X

P (107)

corresponds
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It is, of course,possibleto calculatein advancethe resultsof certain
operationsencounteredin practical problems and to set appropriate
tables identical with thoseusedin the methodof Laplacetransforma-
"•ions.Suchtableswould facilitate the solutionof the discusseddifferen-
tial equations.

3. Calculatenow the results of the following operations,
1 p-1

P 2(1) and_ P _ )(1).

Making use of Eq. 98 we readily find that

1 -- T [e_g(_)] ---- 1 [e_g¢_) _ i],
p _ 7

and

(108-a)

p-1 1 [eXg¢x) _ 2g(x) -- 1]. (108-b)

Formula (101) can, of course, be generalized to the derivative of the

second order y"(x). This generalization will be derived for a particular

case when the weighting function g(x) is a linear function: g(x)= x.

Thus substituting

1 y, 1 1
y_ 1 -- o, pyl-_ ÷ _-- _ py_-_(O),

in the formula

we get

Y-_ Y_ -- °'Yl Yl = PY_ Yl -- PY;_ (0) y_ (0).

Now using Eq. 101 in which, according to the accepted assumption,

we take into account g'(x) = 1, there finally results

y__y,, _ _y____y,_ : 1 __ p2y_-_ _ 1 _ p2y___(0) _ py-_(O)y' (O). (10 o)
1 --a 1 --_

It is also possible, simply, to derive a formula for the second-order

derivative of y"(x) by assuming that the weighting function g(x) is a

logarithmic function

g(x)= Inx; x_ l.

Then, in the defining Formula (98) the lower limit of integration

should be shifted from the point x = 0 to x ----I. After quite elementary

transformations we get

1

x 2 y-,y,, _ ax2 y-_-i y,2 _ 1 - _ P(p -- 1)Yl-_ --
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1
1 - aP(P- 1)Yl-:(1)- py-_(1)y'(1). (110)

It can be noticed that in the case _ = 0 we obtain from Eqs. 109

and 110 the relations established earlier, namely, from Eq. 109:

y,, __ pe y _ p2 y (0) -- py (0)

and from Eq. 110:

x 2 y" ----p (p -- 1) y -- p (p -- 1) y (1) -- py' (1).

The examples given below illustrate the manner of practically

utilizing the derived formula.

Example. Find the solution of the differential equation

cos xyy' ÷ y2 .= 1,

satisfying the initial condition y(0) ----2.

Solution. Assuming that g(x)_-lntg(2 +4)" Consequently,

1
g'(x) -- , and on account of Eq. 102

COS X

1

cos xyy' -_ ] py2 _ p2.

We then have the following operational equation

1 2 y2y py + = p2 + 1.

Hence

p 2

and, on account of Eqs. 106 and 108a,

y2 -- 4e-2g_x__ e-_g(x_+ 1 = 3e-21ntg(_-÷¼) + 1 = 3ctg -ff + _ + 1.

The function being sought is, then, given by the formula

y (x)= + 3ctg _ + _ +1.
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ON FUNDATIONS OF OPERATIONAL CALCULUS 1)

The purpose of this paper is to give a uniform approach to operation:

al methods adapted to different problems such as the solution of differ-

ential and difference equations with constant coefficients, the solution of

Euler equations, difference-differential equations, and so on.

Let T be an endomorphism of the linear space X over the field C of

complex numbers. The endomorphism T satisfies the condition

N

Xa, T"x=/=O, for aN =:_: 0 and x=;/=O, ai(C , x(X (1)
n=0

By this condition the ring of endomorphism

N

X an Tn (2)

n=0

has no divisors of zero and can be extended to the quotient field. This

quotient field is isomorphic with the field of rational functions and each

of its elements

no _-a,T q- ... _-a,nTm (3)
fl0+fl, T+ ... +/_.T n

can be uniquely decomposed into partial fractions

1 (4)
(T -- a) k

If we take different interpretations of the linear space X, we shall obtain

either classical operational calculus or its analogies adapted to different
1

problems. It is more convenient to denote -T- by p.

EXAMPLES

A. Let X be a linear space of functions x(t) integrable in each inter-

val [0, to] and

t

Tz (t) = f x (r) dr. (5)
0

1) Bulletin de l'Acad_mie Polonaise des Sciences (C1. III -- Vol. V, No. 9, 1957,

pp. 855--858).
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If the function x(t) has a continuous derivative x_n_(t), then from

we obtain

Tx' (t) = x (t) -- x (0) (6)

x ("_(t) = p" x (t) -- _ x _k_(0) pn-k, n = 1, 2, ... (7)
k----0

Formula (7) permits us to solve the linear differential equations with

constant coefficients, similarly as the Laplace method and other operation-

al methods. Using the well known Duhamel operational theorem we can

also solve non-homogeneous equations without any restrictions as to the

speed of increase in the function.

B. Let

T (x) t ---- i_ (8)

0 for • _ 1

If the function x(t) has a continuous derivative x(n)(t), then from

T [tx 1 (t)] ---- x (t) -- x(1) (9)

we shall obtain

t"x ("_ = p(p-- 1) ... (p -- n + 1)x(t) -- p(p -- 1) ...

- ... (p -- n + 1)x(1) - ... -- p(p -- 1) x("-2_ (1) -- px("-_(1) (10)

Similarly as in A, formulae (10) permit us to solve the Euler equation

a, t" x (") (t) Jr- ... + al tx' (t) -+- ao x (t) = q_(t)

where a,,, a,_l ..... a0 are constant coefficients and q_(t) is a integrable

function for t _ 1.

C. Let X be a space of number sequences x(n) and

Tx(n) = x(O) + ... + x(n -- 1).

From

where

we have

T [3x (n)] --_ x (n) -- x (0),

3x(n) = x(n ÷ 1) -- x(n),

(11)

n-1

3nx(n) = p"x(n) -- Z 3kx(O)Pn-k' n = 1, 2,3, ... (12)
k=O

Formula (12) enables us to solve difference equations with constant

coefficients.
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Let us consider the equation

nAyin) ----xin) 1, 2, 3, ...

a given initial condition, Equation (13) uniquely determines

(13)

theFor

sequence y(n).
This means that the Formula

Txin) -= y(n) -- y(1), n_ 1 (14)

defines the endomorphism T.

If p----T -1, we have

nAx(n) = px(n) -- px(1), (15)

(n ÷ 1)nA_-x(n) _- p(p -- 1)x(n) -- PiP -- 1)x(1) -- pAx(l)

These relations enable us to solve the difference equations

(n+k)... (n÷l)n_ 0A k+lx+ ... +(n+ 1)n_k_ 1A _x+

+ na k dx + ak+ 1X = 1in). (16)

where ao .... , ak+ _ are arbitrary constants.
We observe that

n--1

p
(17)

m=l

D. Let X be a space of functions x(t) defined for t _ 0.

We consider the difference-differential equation

y'(t + 1) -_ x(t).

For the initial condition

y (t) = I (t) for t ( [0, 1],

Eq. (18) uniquely defines the function y(t). This means that the formula

Tx(t) = yit) -- y(O, 1), t_0,

where

(18)
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Jr(t) for 0 _<t< 1,(o, 1) 09)Y
If(l) ---- const, for t_ 1,

uniquely defines the endomorphism T.

If p ---- T -_, then we have

n--1

x_"_ (t + n) = p" x(t) -- 2 pn-k x_k_ (k, k + 1), i20)
k=@

where x(k_(k, k + 1) is the following function:

x _k_(k, k + 1) = ! xtk_ (t) for k _< t _< k + 1,
Ix tk_(k + 1) = const for t _ k -t- 1



Rationaloperationscanbecalculatedfrom (19) .
We put

P (1)---- P(%t) (21)
p--a

It can be proved that P(_, t) is a continuous function

defined by 2)

P (a, t) = _ (t) + a (t -- 1) _](t -- 1) -{- ,2 (t -- 2) e
2 ! _(t-- 2) _- ... (22)

Using (20) we can solve difference- differential equations

_,x(")(t + n) ÷ ... + alx'(t + 1) _- a0x(t)---- 0

by operational methods.

FINAL REMARKS

If we define in X a suitable convergence, then we shall be able to join

new elements to the quotient field of endomorphisms, e.g.,

e__p ' S/p, 1
Vp

Thus, we extend the domain of applications to partial differential

equations
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_} NUMERICAI, OPERATOR METHOD ')

This paper consists of three parts. In the first part a method is presented for

algebraic solutions of difference equations. Elements of the algebra discussed are

"numerical operators" constituting a special category of numbers. In the second

part, the stability of sampled-data control systems is discussed. The third part

concerns a certain numerical method which simplifies the determination of transients

in electric systems excited by complex signals. The method is based on the t_heo_-_v-_

presented in the first part of the paper.

ja
INTRODUCTION

Difference equations are encountered in several problems of physics,

electrical engineering and also in statistics and problems of finances. For

instance, in electrical engineering, we come across the application of dif-
ference equations in the problems of electric four-poles, filters, multi-

stage amplifiers and -- above all -- sampled-data control systems. Differ-

ence equations have for long been well known; they were first advanced

by Broocks and Taylor (1717) [12j. In mathematics, difference equations
(as also the entire difference calculus) occupy a special position on the

border between algebra and analysis.

They approach analysis on account of a great similarity to differen-
tial equations, primarily, because of very similar classical methods of

solving the two types of equations. On the other hand, difference equa-

tions are very close to algebra, since they are not based on the notion of

limit. Accordingly, they are considered as belonging to algebra rather

than to analysis.

It is likely that precisely on account of this fact several mathemati-
cians in the middle of the last century tried to solve difference equations

by algebraic methods. In this connection, from the classical methods of

solving difference equations on the basis of analysis, there appeared alge-

braic methods sometimes called "symbolic" or "operator" methods.

Of interest here is the paper [11] by Studniczka, a Czechoslovak

mathematician, (1871), in which the author, introducing certain formulae

of difference calculus, treats the symbol .4 as a "number" on which arith-

metical operations are performed, rather than as an operation symbol.

') Rozprawy Elektrotechniczne (Vol. V, No 4, 1959, pp. 515--586).
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It shouldalso be noted that already in 1860the well-known English
logician, Boole [3] used the "symbolic methods" of solving difference
equations.Thesemethodswere not supportedby preciseproofs, and
_hereforemany mathematiciansat that time and later remainedcool
towardthis concept.

Ernest Pascal [8], one of the Italian mathematiciansof the last
century, expressedthe following opinionon this matter: "The examples
presentedin this and the following sectionsare takenfrom a paperby
Boole: it should, however,be emphasizedthat this author, like most
Englishauthorsmakesuseof symboliccalculi usuallywithout sufficient
justification. Thus, even though thesecalculi yield a result in certain
cases,we do not recommendthem to thoseseekinga more elementary
analytical accuracy,unlessa methodis formed for precisejustification
of passingfrom one formula to another.We shall try to solve all our
examplesabsolutelyexcludingsymbolicoperations."

Fromthe abovecomparisonof historical datait followsthat operator
methodswere used in difference calculusquite independentlyof the
analogicalmethodsin the field of differential equations,andwhat is more
important,a few scoreyearsbeforeHeaviside'spapers.

It shouldbenotedasa peculiarity that the correctnessof the method
usedby BooleandStudniczkawasprovedon the basisof the functional
transformation,not in the algebraicway; and that only after a previous
justification of operatorcalculusby Heaviside.Consequently,the opera-
tor solutionof differenceequationswas reducedto the determinationof
Laplace transformsof step functions,and the methodlost its original
algebraiccharacter,its simplicity andelegance.

At present,the problemsof differenceequationsconstituteaseparate
branchof operatorcalculus,which may be called "operatorcalculusof
step functions". In order to solvedifferenceequationsin operatorcal-
culus, we use summationor integral Laplace transformations[4], [5].
Thesemethodslead to a quick result,but it is necessaryin usingthem
to be familiar with specialbranchesof higher mathematics,suchasfor
instance-- apart from the theory of Laplacetransformations-- analytic
functions.Moreover,Laplacetransformationsimposein advancecertain
restrictionson the applicability of the calculus,sothatby meansof these
transformations,it is possibleto consideronly thosefunctions which
satisfythe conditionof convergencyof the integral or the seriesdetermin-
ing such transformations.

The author showsin the presentpaperthat a lineardifferenceequa-
tion may be solvedalgebraically,without usingLaplacetransformations.
Insteadof stepfunaions, we shall consider"numericaloperators"which
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4

are a special category of numbers. The unit of these numbers is the
displacement operator q

Q = 0,1,0.0, ...
o

Note that the present work is an attempt to adapt, in the field of
difference equations, the interpretation of operator calculus presented

by Professor J. Mikusinski, a Polish mathematician.

This interpretation imparts great simplicity to the method, and
facilitates its application in solving practical problems. The method calls

for no knowledge of the theory of Laplace transformations or the theory

of analytical functions, and therefore can be used by those who have no

special mathematical background. At the same time, the method is more

general since it imposes no restrictions on the class of step functions
being discussed.

Apart from the theory, the present paper presents examples of prac-

tical applications of the method in electrical engineering, and particularly

in the investigation of sampled-data control systems and transients. The

manner of investigating sampled-data control systems by means of the

method presented is taken from the paper by Tsypkin [4], in which the
author makes use of what is called "summation Laplace transformation"

mapping the step functions f(n) on to the functions of the complex
variable z, in accordance with the formula:

eo

F (z) -_ ,_ f (n) e -zn.
n=O

The numerical operator method here gives certain simplifications
and a greater generality, since it does not require a simultaneous appli-

cation of two Laplace transformations (summation and integral transfor-

mations). It should, however, be emphasized that the investigation of

sampled-data control systems by means of a special mathematical appara-

tus (such as the summation Laplace transformation or the numerical
operator method) is justified only in more complicated cases. The method

presented is essentially useful in the case of systems with a sampled-data
feedback, whereas in dealing with an ordinary sampled-data system and

periodic exciting signal, it complicates rather than simplifying. Systems
with a sampled-data feedback are widely applied in control systems.

Finally, it is worth mentioning that the operations on numerical

operators are isomorphic with the operations on certain subsets of

Mikusiflski's operators -- namely, on the operators of the form a,e -sn.

Accordingly, the method presented for solving difference equations may

clearly be deduced on the basis of Mikusifiski's operator calculus. How-

ever, it would then be necessary to make use of the amalysis of operators,
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rather than the algebra, that is to say, of a notionally difficult and ab-

stract apparatus. Thus, we come across something like a paradox: in

solving notionally very simple difference equations, it would be neces-

sary to apply a much more abstract and notionally difficult mathematical

apparatus than in solving differential equations.

In defining the notion of convergence of a sequence and a series

of numerical operators the author, with a view to preserving simplicity

hasnot introduced the notions of the metric and the norm. The space

metric of operators may be determined by the formula:

-_1 lan -- b, Ie(d'b)---- 2" 1 4-1a,--bnl "

n=0

By virtue of the definition of the metric, it can be shown that the

space of numerical operators is a complete space -- that is, each basic

sequence (satisfying the Cauchy condition) of numerical operators has

a limit in the set of numerical operators.

PART I

FOUNDATIONS OF THE NUMERICAL OPERATOR METHOD

THEORETICAL FOUNDATIONS

1.1. The notion of the numerical operator

1.1.1. Definition of the numerical operator

A numerical operator {an} will be called an ordered system of num-

bers of the form:

... O, O,a_x,a_N+l, ... a-l, ao, al, a2, ... a,, ... , (1)

where N is an integral number, all the terms at the left-h_ind side from

a_ N are equal to zero, and for which the equality, sum and product are

defined as follows

1. Definition of the equality

Two numerical operators {an} and {bn} are considered equal one to

the other, and we write {an} = {bn} if and only if, when any n : an -- bn.

2. Definition of the sum

A sum of two numerical operators {an) and {bn} is called the numeri-

cal operator {an + bn), and we write

{an} + {bn} = {an 4- bn]. (2)

39



3. Definition of the product

A product of numerical operators (a,} and (b,) is called the numeri-

cal operator { 2 am'b,__}, and we write
/11_ -oo

{a,} {bn} : { _ am'bn_m}. (3)

In view of the assumption that only a finite number of terms in the

operator with negative indices is different from zero, the general term

of the product always contains a finite number of factors.

A numerical operator will be denoted by the symbol (a,} or briefly d.

We shall sometimes use also the symbols K(a,} or Kd,. The number K at

the left-hand side of the last two symbols indicates that all the terms with

the indices n ( K are equal to zero. We shall use the symbol L to separate

terms with negative indices from the remaining terms. Thus instead of

writing, for example, ... 03, 12, 5_1, 80, -- 21, ... we write ... 0, 1,

5,[_ 8, -- 2, ...

5

4

3

2

!

0
I I I I i | ___

I 2 3 4 5 6

5

0 f 2 3 4 5 6

Fig. 1. Geometrica_l

interpretation of a

numerical operator

We may give a double graphical interpretation to numerical opera-

tors. Namely, we may consider that each term a, of the numerical opera-

tor (a,} represents, in the rectangular coordinates, a point (n, a,,) or

a rectangle having the amplitude a, and a width equal to unity (Fig. 1).
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In a particular case,if we consideroperatorsall of whosetermscor-
respondingto negativeindicesareequalto zero,thetermsof the product
canbe representedby meansof the Cauchyproduct,sincewe have

{an}'{bn}={_amb.-r.}. (4)
m=0

From the definition of the sum and the product it follows immedi-

ately that these operations are commutative, associative and distributive.
Thus we have

=
= (5)

The operator 0 = ... 0 .... 0, [_ 0, 0 .... 0 .... is called the "zero operator".

1.2.2. Difference and quotient of numerical operators

Let {a,) and {bn) be two arbitrary numerical operators. From the

definition of the equality and the sum, it follows that there is one and

only one operator {x,) satisfying the equation:

{b,} ÷ {x,} =- {an}.

This operator is called the difference of the operators {an), {b,) and we
write:

{Xn} _- {an} -- {bn} = {an -- b,}. (6)

The operation determining the operator (xn) is called the subtraction.

From the definition of the product, it follows that if the operator

{bn) is not a zero operator, there is one and only one operator {x,) satis-
fying the equation:

{xn}" {bn} = {an}, (7)

which, by virtue of the commutative law, is equivalent to the equation:

{b,}. {xn} = {an}. (7a)

The justification of the above statement is as follows.

Assume that we have two arbitrary operators

pd : ... 0, 0, 0, ap, ap+l, ap+2, ... , (8)
k_)-_ ... O,O,O, bk, bk+l,bk+ 2.... ,

and

ap _ O, bk _ O.

In accordance with the definition of the equality and the product,

equation (7) is equivalent to a system of linear equations which -- after
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the omissionof equationssatisfiedby identity (bothsidesof theseequa_
tionsareidenticallyequalto zero)-- takestheform

a2k = x k bk ,

a2k+l ---- X k bk+l -_- Xk+ 1 bk,

a_k+2 = x k bk+e + Xk÷l bk+l ÷ Xk+,,_bk,
................................. (9)

ap-1 -_ Xk b_:-k-1 + Xk+l bp-k-2 ÷ ... + Xp-k-1 bk ,

ap = Xk b_-k + Xk+_ br-k-1 + ... + X_-k bk,

ap+l = Xk b_-k+l _- Xk+l bp-k @ ... _- Xp-k+l bk,
ooooo,,o.ooooo oooooooo o,ooooo,,oo

account in the system (9)

a2k _ a2k+l _--- ... --_ ap-1---_ 0

Taking into

we shall obtain

and

Xk _ Xk+l _ .. • _ Xp-k-1 _ 0

ap ap+l bk -- ap bk+l
Xp--k -- , ap-k+l = , etc.

bk b_

Thus we have

{z.} _a (10)-- _ -- ... O, O, Xp-k, Xp-k+l,Xp-k+2,Xp-k+3, • • •
kb

and, if p---- --N_0, K= --M_0, then

{x,} - __a_ _ ... 0, 0, x_(N__),
-Mb (10a)

X-(N-M)+I, • . . X_ l_x 0, • . . X n, • . .

In the particular case in which N = M = R, we shall obtain

_Rt_
{x_} = 0x = ---_ = ... O,O,t_Xo,X_ .... x,, ...

_Rb

The numerical operator {x.} determined by formula (7) is called the

quotient of the operator {a.} and by the operator {b.} and we write

{x.} = {a.} : {b.}

or

{x.} --{a.}
Ibo}"

The operation which determines the quotient {a.} :{b.} is called

the division. A quotient exists and is uniquely determined, if and only if

the diviser is different from the zero operator.
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Thus,on the setof numericaloperators,four operationsareuniquely
performablewith the exceptionof the division by the zerooperatore)
Numericaloperatorsthusconstituteanumericalfield.

Moreover,it follows from the aboveconsiderationthat the index of
the first non-zeroterm or a quotientof operatorsis equalto the differ-
enceof the indicesof the first non-zeroterms in the divident and the
divisorrespectively.

1.2.3. Power of numerical operators

The symbol d k is called the "k-th power of a numerical operator" and
is defined as

dk = ddd ... d. (ii)

k

If d =/= O, the symbol d -k is called the "k-th negative power of a numeri-

cal operator", and is defined as

d_ k _-- ... 0, 0, k 1, 0, 0, ...
dk (12)

Moreover, we assume that

do___ ... 0,0,/1,0,0, ... ,0, .... (13)

The definitions accepted above and the applicability of the commuta-

tive, the associative and the distributive law enable us to perform the

same operations on numerical operators as on numbers.

Examples

1. (d -t- b)(d -- _)) = d2 -- _2

2. (d + @ = d_ + 2d8 + 8"_

3. (d + 8)(_ + _) = do + 80 + dJ + _,

4. d+_ _ . ....i,^,.o+_o
o+d-o+_' o+a

2) Note that if we confined ourselves in advance to consider the operators
determined for n _ O, and if we defined the quotient for those by the formula

n

(an) (bn} = _ X an'=m bin},

m=0

then the division would be performable in a general case, if and only if bo =ie O.
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ci ci ci
5. _ e)(5 - (e - a)(5 - + (d - - h) '

6. If d._) = 5, then d = 5 or b -- 5.

1.2.4• Numbers versus numerical operators

Let us consider numerical operators of the form ci ----... 0, 0, U a, 0, 0,...

and form the sum, the difference, the product and the quotient of such

operators. In accordance with the definitions of arithmetical operations

just presented, we shall obtain

(...0,0,La, 0,0,...) + (...0,0, Lb, 0, 0, ...) --- (...0,0, La + b, 0,0,...),

(...0,0, La, 0,0,...) - (...0,0, Lb, 0,0,...)-- (...0,0, Ua - b, 0,0,...),

(...0,0, La, 0,0,...) • (...0,0,Lb, 0,0,...)_-(...0,0,La • b, 0,0,...), (14)

( a )(...O,O, La, O, O,...):(...O,O, Lb, O,O,...)-_ ...0,0, -b,0,0,....

The results of the four arithmetical operations on the numerical

operators of the form a----... 0, 0, L a,0, 0 .... correspond with the results

of analogous operations on the numbers set into one-to-one correspond-

ence with such operators. Accordingly, we say that the set of all the

operators of the type d = ... 0, 0, L a, 0, 0, ... is isomorphic in respect to the

four arithmetical operations with the set of numbers (real numbers, or

more generally -- complex numbers).

In view of this property, the operators of the type ... 0, 0, L a, 0, 0 ....

will be denoted by the same symbols as the numbers set into one-to-one

correspondence with them, and we shall write this in the form of the

equation

... 0, 0, Ua, 0, 0, ... _ a. (15)

In accordance with the above agreement, the zero operator will be writ-

ten as the number zero

{0} = 0, (i6)

If, in turn, in the product {a,} {b,} we assume (a,} -_ ... 0, 0,Ua, 0, 0 .....

this product may be written as formula

a {b,} _-- {ab,},

where a at the left-hand side of the equation is a numerical operator,

while at the right-hand side it is a number.

From formula (14) it also follows that the zero operator (0) is the

modulus of addition and the operator 1 is the modulus of multiplication,

as we have
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{a.} + {0} = {an},
{a.}. 1 = {an},

where, in accordance with (15)

1 -- ... 0, 0 .... 0,L 1,0, 0, ... 0,...

1.3. Operations of Displacement, Summing and Difference

1.3.1. Displacement Operation

displacement operator q will be called the following numericalA

operator:

... 0, 0, L0, 1, 0,0, ... (17)

By virtue of the definition of power, we shall obtain

q2 _ ... 0, 0, L0,0, 1,0, 0 ....

qk = ...0, 0, L0, 0,0, ... lk, 0k+l, 0,...
• ,..,.,....,..,, ..,,,,,,.,..

q0 = ... 0.0,L 1, 0, 0, ... (18)

q-1 = ... 0, 1,L0, 0,0, ...

q-k = ... 0, 1, ... 0, ... LO, 0, 0, ...
k k+l

• e°,,, .o°,°°,,,,,.,i.,,,,,,°

In addition to the operator q it is convenient to introduce another

displacement operator, namely

p= ... 0, 1,L0, 0, ... 0,..., (19)

we then have

p = q-I
and

p.q = q.p _- 1. (20)

The operators whose product is equal to 1 -- for example, p and q --

are called "inverse operators".

Let (a,} _... 0, 0, a_N, a_N+l,...a_l,.., be an arbitrary numerical

operator. The multiplication by the operator qk is called the displacement
operation.

In accordance with the definition of the product, we shall obtain

qk {an} __ ... O, 0, a__,,, a_N+l, . . . a_k_l, L a_k, . . . ao, . . . , (21)
q-k {an} = ... O, O, a_/x,, a-N÷1, • • • ao,.., ak-l,Lak,...

If, in turn, we discuss the following two numerical operators

{a,+k} -----... 0, 0, L ak, ak+l,.., a,÷k,...,
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{an+k+1} -_ .. • 0, 0, Lak+l, ak÷2, . . . an+k+2, ... ,

then -- taking into account (21) -- we shall arrive at

q-1. {a,+k} = ... 0, ak, 1 ak+l, ak+_, . . . ,

q-l.ak = ... O, ak, t-- O, 0, ....

Hence, subtracting and substituting q-1 _-- p,

a

P {n+k} -- pak : {an+k+l},

or

{a,+k+l} -_ p (a,+k} -- pa k . (22)

In a particular case in which k = 0

{%+1} = P" {an} -- pao. (23)

If in Formula (22) we assume that k ---- 1, and we take into consideration

Formula (23), then we shall obtain

{a,+e} __ pe {%} _ pe ao _ pal.

Effecting the above transformations several times, we shall arrive at

{an+k} : pk {%} _ pk ao _ pk-1 al -- ... -- pak-1, (24)

that is,

k-1

{a'+k} ---- Pk ( {an} -- 2 p-" a") '
n=0

where k = 1, 2, 3 ....

In the particular case, in which

a o._ a 1-_ a 2._ ... --_ ak_ 1 _ O,

then

{an+k] __ pk %.

Similarly, if we are given the following two operators

{a,_k } = ... O, O, [_ a_k, a_k+l, . . . a,_k, . . . ,

{a,_k_l } --_ ... O, O,l--a_k_l,a_k, ... %-k, """ ,

then

(24a)

(25)

(26)

{an_k_1} = q {a,_k} + a_k_i, (27)

whence for the case in which k -_ 0

{%-1} _- q {%} + a-1. "(28)

However, if in Formula (27) we assume k ---- 1, and we take into consider-

ation (28), then

{a.__} = qe {%} + qa_, + a_2.
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Performingthe

{a.-k]= qk {a.} + qk-1 a_l -[- qk-2 a_2 +... -4: a_k
or

above transformations several times, we shall arrive at

{a.-k} = p-k {a_} _- p-k+1 a_l + p-k+2 a-e ÷ .. _- a_k,
that is

k

{a._k}_-p-k({an} + 2p'a-.).
n=l

r

In the particular case in which

a_ 1-_ a_ 2 _- ... ---- a_ k _--- 0,

then

{a._k} = p-k {a.} _-- qk {a.},

1.3.2. Summing operation

(29)

(29a)

(30)

In what follows, we shall consider, primarily, operators the terms of

which having negative indices, are equal to zero, that is to say, operators

of the type

{x,l = 0{xo}.... 0, 0,1 -Xo,_l.... x,,...
For simplicity, we shall write these operators as follows

{x.} = Xo, xl, • • • x., ...

Assume now that we are given the following numerical operator

{1} = 1, 1,1,... 1 .... (31)

This operator will be denoted by the letter o, and will be called the "sum-

ruing operator".

By virtue of the definition of the product we have

o_=(i}-(I}----{_1}----{n+1}----1,2,3,...,

m=0

/l

m-M)

and more generally

k ' (32)

where k is an integral number, and

in + =(n + 1)(n+ 2)...(n + k)
k ] k!
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Suppossewe are given an arbitrary numericaloperatorof the type
{an}----a0,al, a2...an,.... The multiplication by a summing operator

vdll be called a "summing operation".

In accordance with the definition of the product, we shall obtain

{b,} = {1} {an} -----[_aml,-,,}----- ao, ao + a,,ao + a, + a_,... (33)
m=0

Thus, as a result of multiplying the numerical operator {an} by

a summing operator, we obtain a new operator {bn} the terms of which

are partial sums of the terms of the operator {an}, since we have

b0 = a0,

bl = a0 + al,
.......... (34)

b, = a0 + at -_- a., + ... + a,,
• o • • • I • • • •

The summing operation may be performed a number of times, for

example, twice

m=0 mr=0

or three times

o3{a,]={_[_(_ame)l }"
m=0 rnl=0 mz_O

In performing the summing operation several times, we make use

of the formula

ok+1. {a,} = i k ) am (35)
m=0

The correctness of this formula follows from the definition of the

product, and from Formula (32), since we have

n

o

m=0

*) Note that Formula (35) is an analogue of Cauchy's integral
t

0

replaeing the k-th integration.
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1.3.3. Difference operation
¢

The difference operator ($ will be called the following numerical

operator: 1, -1, 0,0,... 0,...

By virtue of the definition of the product, we have

(1, --1, O, 0,... 0,...)(1, 1,... 1,...)---- 1

whence,

and

1 1

6.0=o.6=1.

In view of the above the operators 6 and _ form a pair of inverse

operators.

Assume an arbitrary numerical operator {a,}----a0, al, as .... a ....

The multiplication by the difference operator will be referred to as the

"difference operation".

In accordance with the definition of the product, we have

{b,} = _{an} = a0, al -- a0, as -- as .... an - an_z,...,

or

{an} = {an -- a,_l} -_ {Aan-1}.

The difference operation may be performed several times. A dif-

ference of the second order is denoted by the symbol {A s an}, and

{Aea,} = {Aan+x}- {Aa,},

or, if we take into consideration the denotations {Aa,+l} and {Aa,},

[A sa.} = {an+2} -- 2 {a,+l} + {an};

.Similarly

hence
{Aaa,] = {A" a,+,}- {Aea,},

{Aaan} = {an+a] -- 3 {a.+e} -t- 3 {an+z } -- {an}

and, more generally

{Ak an} = {Ak-la,+,} -- {Ak-la,},
k

{Aka"} = (-- 1)v v!(k -_ v)! {an+k-v}"
v=0

The difference operation may conveniently be expressed by means of

the displacement operator. In the case of a difference of the first order,
we have

{Aan} = (p -- 1){an} -- pao,
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then,in thecaseof adifferenceof the secondorder
{d_%}= p[(p -- 1) {%} - pa o -p3ao] -- (p - 1){%} + pao =

=(p--l) e{%} + --p(p- 1)%--p3ao

and, more generally

k-1

{3k %} = (P -- 1)k {%} -- P 2 (p -- 1)k-l-" 3" a0,
1,._0

where k is an integer and A°a0 = a0.

Examples

1. If {a.} = {on}
then

{3a.} = {%+1} -- {%} = c({n + 1} - {n}) = c {n + 1 - n} = c {1} = {c}

and

{A "_a.} = {Asa.} = ... = O.

2. If (a.) = (ean),
then

{LJan) = {e _("+I) -- e_} = [ean(e _ -- I)} = (e_ -- 1){e_"},

132 an} = (e" - 1) {ea("_l) - e""} = (e - 1) 2 {e""},

and, more generally

{3ka.} = (e" -- 1)k {e""}.

1.4. Notions of a sequence and a series of numerical operators

If every non-negative integral number k is set into one-to-one cor-

respondence with a numerical operator dk = (a.)k, then we have a de-

termined infinite sequence of numerical operators

{ak} _- a0, dl, a2, a3, . . . dk, . . . (36)

The operator b = (b.) is said to be the limit of the sequence of

numerical operators (dk), and we write

/_ = lim dk, (37)
k--_ce

if for each n the equality

lim (a_ -- b.)= 0, (38)
k-+oo

holds, where a k -- the n-th term of the k-th operator.
n

The sequence of numerical operators which has a limit is called

a convergent sequence. The sequence of numerical operators which has

no limit is said to be divergent.
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A seriesof numericaloperatorsd = {a,} is called the symbol

do + dl + d2 + ... -t- dk + ... = _dk" (39)
k=o

The operators d0, dl, d2 .... dk,.., are called constituents of the series

and the operators

So : ao,

$1 -- do + dl,

$2 = do + dl + d_, (40)
o a . , , . , * e ° * • * •

are partial sums of the series.

An infinite series is called convergent, if the sequence of partial

sums _k is convergent. The limit of a sequence of partial sums is called

the sum of the series of numerical operators.

If

lim Ck = _-_, (41)
k-->oo

then we write

or

(42)

then we shall obtain
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a0 qO = ao, 0, 0, 0 .... 0,...,

al q = 0, a_, 0,0,... 0, ...,

a2 q2 = 0, 0, a2, 0, ... 0, ..., (44)
• • • . • • • • • • * • . • • . • • • •

an qn = O, O, O, O, . . . O, a,,, O.....

In accordance with (44), the partial sums of the sequence (43) will take

the form

30 = ao, 0, 0, 0, ... 0, ...,

_:1 -= ao, al O, O,... O,....

$2 = ao, al, a2, 0, ... 0 .... , (45)
. • • ° • • o • • . ° • • * • * • * °

S, = ao, al, a2, as, • • • an, 0, 0,...

oo

_= _k-
k=0

Let {a,} be an arbitrary numerical operator. If we make up a se-

quence of the products a, qn:

{an qn } = ao qO, al q, a2 qe, ... an qn , (43)



Be virtue of the definition of the limit of numericaloperators,the
sequenceof partial sums_n will havea limit which will be the operator
{a.}

lira :_n : a0, al, a2, a3, • • • an, a,+l, • • • : {a,}. (46)"
n--)-co

After taking into consideration (44) and (45), we arrive at

2d = an q" : a0 + a_ q'. (47)

n=O n=l

For an operator having the general form _N_n = ... a_N, a-N+1, ... a__ [-- a0, .. •

... a,, ..., we shall obtain

oo oo _ qn.-Ndn = 2 an q" = 2 anP" + __ a, (48)
n=--oo n=l n=O

Thus, every numerical operator can be represented in the form of

the power series of a displacement operator.

Let us now discuss the following power series

oo

----X q" = 1 ÷ q -_q2 d- ... + qn -I-... (49)
n=0

The sequence of partialsums of this serieswill take the form

{_k} : 1,1 -_q,1 _- q Jr qe,...i d- q + qe d- ... d- qk,.... (50)

We then have

_o = I

:_i= 1 d- q----I,1,0,0,0, ...,

$2 : 1 d- q _- qe : I,I,1,0,0,..., (51)

$8 : 1 d-q d- qe d- qS I,I,I,1,0,0,....

Sk---1-{-q_-...+q}= I,I,I,1,...I,0,0, ....

We shall now prove that the sum of the series (49) is the expression

1 1

1 -- q i, -- 1,0,0,0,..

In fact, since

(1, -- 1,0, 0,0,...)(1, 1, 1, 1,...) = 1,

then by virtue of the definition concerning the division of numerical

operators, we shall obtain

_-- 1 -- I,i,I.... I,... = {i}. (53)
1,-- 1,0,0,0,...
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Hence, in accordance with the definition concerning the convergence of

numerical operators (38)

lim Sk = "_

• and
oo

n=0

= 1 + q+ q_+ ... +q"+ ....
l--q"

(54)

1.5. Notion of the function of a numerical operator

If each numerical operator 2 = {Z,} belonging to a certain set is

set into one-to-one correspondence with another numerical operator

= {Fn}, then we say that 1}(2) is a function on the set of nu-

merical operators.

The exponential function e; is defined by the equality

e;= (55)

n=0

The series (55) is always convergent, and therefore the exponential

function is determined for any operator 2.

On the basis of the Definition (55), we can easily account for the

following relations

1. en •e_,= e +_',

2. (e_)m = em;.

In the particular case in which z : q, we shall obtain

eq=l+q+-2T+_-.t +...= . •

(56)

(57)

Similarly, the trigonometric functions sin 2, cos 2 are defined in
the field of numerical operators as the sums of the following series

co

_-_ (--1)n22"+I
sin2 = (2n '

(58)
c_

2 --_-_ (- i)"22"COS
(2n)!

n=O

These series are always convergent, and thus sin 2 and cos 2 are

determined for any operator 2.
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On the basis of the Definition (58), we state that the function sin 2

is odd and the function cos 2 is even

sin 2 ---- -- sin (-- 2), (59)
cos 2 ---- cos (-- 2).

In the field of numerical operators the equation of Euler also holds

e +_iz_cos2_isin2. (60)

In the particular case, if 2 ----q, we have

1 1

sinq ---- ... 0,0,0, 1,0, -- _.y ,0,_.,0,...,
(61)

1 1 I

cosq_...0,0,1,0,--_-v,0,_.v,0, 6 "'"

The trigonometric functions tan 2 and cot 2 are determined by the for-

mulae

sin 2 cos 2

tan 2 ------cos 2 ' cot 2 -_ sin _ (62)

The hyperbo]ic functions sinh 2 and cosh 2 are defined in the field

of numerical operators by the formulae

e;-- e-_ e__- e-_
sinh 2 -- , cosh 2 ---- • • (63)

2 2

By virtue of this definition,we obtain the relations

sinh _ ------- isin i2,

cosh 2 ---- -- cos i2

and in a particular case, if 2 _- q,

1 , 1
sinhq=...0,0, K_ 0,1, 0, _-.v O,_-.v,O,...,

11 1coshq=...O, 0,K_l,0, .'0' . '0'_. ''""

1.6. Examples of rational operators

Below will be given a few more important rational functions of the

displacement operator. We shall use these functions in solving practical

problems.

1. {an]={1}= 1,1,1,...1,....

Taking into consideration Formula (24), we shall obtain

{1] = p({1] = 1).
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.Whence
_ p _ 1

{1} p-1 1-_

2. (a,I = {n} = O, 1,2, 3,4, 5, ... •

In accordance with (24), we write

{n + l} = p (n -- O).

Whence

_ {1}
{n} p -- 1

and

Whence

or

P
{n}-- (p_l) e.

3. {a,} = {n 2} = 0,1,4,9,16, ....

In accordance with (24), we write

{(n + 1) s} ----p{nS}.

{u s} -_ 2 {n} ÷ {1} = p{ne},

{n_}= !114 2{n}
p--1 '

and after taking into account (64) and (65), we have

p(p + 1).
{uS} = (p -- 1_'

4. {a,} = {n3}.

In accordance with (24), we write

{(n + 1) 3} = p {n3},
whence

3 (n_}+ 3 {hi + 1
{n3}=

p--1

and after taking into consideration (65) and (66) we have

{n 8} ---- 3 p (p + 1) p p
(p -- i) 4 ÷ 3 (p _ 1)3 ÷ (_-_ 1)_,

or

_ P
{n 3} (p -- 1)4(p e ÷ 4p ÷ 1).

= In(n- 1)}5.{a°} / 2! "

(64)

(65)

(66)

(67)
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Taking into consideration Formulae (65) and (66) we shall obtain

2! ---- -- -----2" (p-- 1)3 ---_'(p_l)e

1 p(p+ 1)--p(p-1) p

2 (p -- 1)_ (p -- 1)3"

6. {a.} = n(n -- 1)(n -- 2)
3!

In view of the fact that

P 3! ----- 3!

and

(n+ 1)n(n- 1) n(n- 1)(n- [n(n--I _- '
we shall obtain

{n(n--1)(n-- _ 1 In(n_--3w 2)} P 1[ 2,1)}_

7. {a,}= {c"}.

By virtue of Formula (24), we have

{c_(o+'}= p({c_"}- 1),
whence

and

{c_"} c_ --- p {c_"} -- p,

{ca-} = P
p -- c_

[(-- c)_"} _-- P
p+c _"

(p -- 1)4"

(68)

(69)

(7{])

1.7. Examples of solving difference equations

Example 1

Let

x n+ 2_:.+,= 1; n_0

be a linear difference equation

Determine Xn with the assumption that Xo----0.
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Solution
Makinguseof Formula(24),wewrite

3c.+ 2(pScn-- pxo)= 1

hence after taking into account that Xo = 0, we shall obtain

i
X?l ---

2p-b 1"

Then, taking into consideration the relation (64)

we have

= {1} = p
p--l'

1 1

p _ 3 3
_"= (p --1) (2p -}- l) p--1 -_2p-1-

1_,1_.,__{(__/o-1}=_,0._._.1....,÷_(0,_,
Example 2

Let

be a linear differential equation.

Determine }., the following boundary conditions being assumed

11)2'4' ....

Solution
X 0 = X 1 = X 3 = 0, X2 _- -- 1.

or

Using the formula (24) we write

}. (p4 ÷ 2pS __ 3p2 + 2p + 1) ---- - p2 _ 2p,

-- p2 -- 2p _ _ p2 _ 2p K1 Ke
}. -- (p2 + p + 1)2 -- (p _ p,)e (p _ pe}2 -- (p _ p,)2 + -__-p--_-

where

g 3 K4 •
-_(P--P2_ _ P--P2 '

Pl-- . 2z

1 l--

2 _i -=e 3 ,

1 |/3 = e' Y
P2 = 2 i -_- ,
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and

p_ + 2pl 1 . ]/-3

K1-- (Pl--P2) 2 -- 2 _ 6 '

p_ + 2p2 1 . 1/-3

K3------(Pl--P2) _ = --2---z_-'

2

Ks=--K4--(p,_p2)3(pl+p2÷PlP2)=0,

hence, in accordance with Formula (12) in the table of numerical oper-

ators (p. 96).

K1

Example 3

Let

÷
K3

-- K1 {(n -- 1)p_ -2} + K3 {(n- 1)p_ -_} =
(p -- p2) 2

2

x2,+1 + 2_,+ 1 -- 3 ---- 0, n/> 0

be a "nonlinear" difference equation.

Determine X, with the assumption that Xo = O.

Solution

Using Formula (24), we writ< -e _:2t, n W 2p_c --3----0,
whence

_c,,,2 = -- 2p ± I/4p"+ i2p"-
- 2p e - = -- q _+ 2q,

or

Xnl = --q÷2q=q=O,l,O,O,...,

_:n'.'= --q--2q= --3q=0,--3,0,0,....

2. APPLICATION OF THE NUMERICAL OPERATOR METHOD

IN ELECTRICAL ENGINEERING

2.1. Application of the numerical operator method to the determination

of the energy relations in ladder networks

2.1.1. Example of a ladder line

By means of the numerical operator method, we can solve several

practical problems in electrical engineering, theoretical physics, statistics,
etc.
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As an example,we shall determine,by meansof this method,the
energy relations in a ladder line consistingof four-polesof the type T.

Fig. 2. Link of a chain of

symmetric four-poles of the

type T

Ln in÷_

On the basis of the Kirchhoff law, we can set the following equa-
tions

(zl + z2)i. -- z2 in+l -- un ---- 0,
(71)

z2 in -- (zl -F z_) in+l -- u.+l = O .

Formulae (71) represent a set of two homogeneous difference equa-
tions of the first order.

Our task is to determine the quantities i. and un for n- 0, 1, 2,

3.., This task is equivalent to finding two operators {in} and {u.} sat-
isfying

(< + z_){in} - z2{i.+,}- {u.} = 0,
(72)

Z2 {in} -- (Z1 + Z2){in-F1} -- {Un+l/ = 0.

Taking now into consideration the law of the displacement operation (24),
we shall obtain

{i.+,} = p({i.} - io)

and (73)

{u.+,} = p ({u.} -- u0),

where io, uo = the boundary values of {i.}, {u.} for n ---- 0.

Taking into account (73) in (72) and solving the set of algebraic

equations with respect to {i.} and {u.}, we shall arrive at

I ( u0p p-- 1÷ zl io--pz- [
{in}=

p-_ 2(1 ÷ z_)-- p÷l

Z, _] Z, ]2 1]io

2:1

if we denote

1+zl =eoshB,
2:2
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whence

thenweshallobtain

1-t- z-!/e 1 = sinh _ fl,
z2 ]

Uo
p [p -- cosh fl] i0 -- P --

Z2

{i,} = p2 _ 2p cosh f + 1 '

cosh f] Uo -- pz2 sinh _ fi0
P[P--p2 _ 2pcoshf + 1{Un 

Now, if we take into consideration Formulae (23) and (24) in the table

of numerical operators (p. 96), we shall obtain

[in} = i0 {cosh fin} Uo {sinh fn},
z2 sinh f

{un} = u0 {cosh fn} -- io z2 sinh f {sinh fin}

or

where

{in} = io {cosh fin} - Uo Y {sinh fin},

{un} = Uo {cosh fin} -- ioZ {sinh fin},
(74)

1 1
y _ -- D

Z z2 sinh f"

The expressions (74) constitute a general solution of the problem

under consideration and contain the constants io, uo which are to be

determined from the boundary conditions.

Let us now consider a particular case in which the line is short

circuited. Assume that the N-th four-pole is short-circuited -- that is

UN = O. (75)

Taking into account (75) in Equations (74), we shall obtain

0 = Uo cosh fiN -- io Z sinh fN,

whence

(76)

u0 cosh fN _ u0 Ycoth fiN.
io = -_- • sinh fn

Substituting io into Equations (74), we shall obtain

{in] = uoV[cothfN{coshfn} -- {sinhfn}] = uoY {coshf(N-- n)}
sinh fn

Uo {sinh fl (N -- n)}
{un} = Uo [{ cosh fn} -- coth fiN {sinh fn}] -- sinh fN

6O



if-the line consistingof N four-poles is in an open-circuit condition --

that is, if

iN: O,
then we shall find

sinh fiN

i0 ----u0 Y cosh fiN -- Uo Y tanh fiN.

Substituting io into Equations (74), we shall arrive at

UoY {sinhfl(N -- n)},
{i,} = u 0 Y [tanh fin {cosh fin} -- {sinh fin}] -- cosh fiN

(77)

{%} = u0 [{cosh/_n} -- tanh fiN {sinh l?n}] = u0 _{cosh fl (N -- n)}
cosh fin

Now in view of the fact that

-_ lim ....
N-_o L cosh/_N N-_ooL epN + e-pN ]

= lim [e-#l +e-D¢2N-,,]N-_o¢ + _ l = e-P", (78)

and similarly

[sinh fl (N -- n)]
lim [ Co_-_N l = e-D" (79)N-_oo

we shall obtain the well-known equation for an infinite network

{in} _- U 0 Y {e-D"} (a0)
{u°}= Uo{do}

2.1.2. String of high-voltage insulators

Figure 3 represents a string of high-voltage insulators and shows

a simplified equivalent circuit of such a string.

Fig. 3. Chain of high voltage in-
sulators

a 0
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In accordancewith the Kirchoff laws, we can easily establishthe
following equation

j_ocl (Un÷2-- Un+I)"= jO_Cl(U.÷_-- U°) + iO_C2U.+_,

whence

{u,+2}- 2 1+ _ {u._,}+ {u.}= o. (_1)

The expression (81) is a linear difference equation of the second

order, and can be solved by means of the numerical operator method.

Taking into consideration Formula (24), we shall find

{u,+l} --_ P ({u,} -- u0), (82)

{u,+_} -----Pe ({u,} -- uo) -- pu,.

Taking into account (82) in Equation (81), and assuming that Uo ---- O, we
shall obtain

p_--2 1÷_:- p-kl {un}=pul,

whence

After denoting

{u.} .... pul

pe 2(1 + c_)-- p+l

we have

C2

cosh x ---- 1 + 2c_'

s oh   co h x=l=Vc ( 

(83)

(84)

p sinh x u_
[Un} "= p2 _ 2p cosh x q- 1 " s-inh x (85)

and after taking into consideration Formula (23) in the table of numer-

ical operators; we obtain

u, {sinh xn} (86){Un} = Sinhx

The quantity u_ is found from the boundary conditions; namely, we
assume that

UN = Uz ---- voltage of the line with respect to the earth

which assumption together with (86) yields

(87)
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sinhx

ul ---- Uz sinh xN " (88)

Taking into consideration the expression obtained from u 1 in Equation

(86), we shall obtain

Uz {sinh xn} (89)
{u,} = sinh xN

C2

If _ is small, then sinh xn _ xn, sinh xN _-_ xN, and

Uz
{u,} _ _ {n} (90)

and then voltages occur on each insulator.

PART II

STABILITY OF SAMPLED-DATA CONTROL SYSTEMS

1. INTRODUCTION

Control systems may according to their properties be classified into

control systems with continuous action, and control systems with non-
continuous action.

Among control systems with continuous action, we include systems

in which the signal correcting the controlled quantity is a continuous

function, and the control circuit is always closed. Among systems with

non-continuous action, we include control systems which do not satisfy

the above requirement.

Systems of important type are what are called "sampled-data con-

trol systems" -- namely, those in which the control circuits are closed

periodically. In what follows, we shall confine ourselves to the investi-

gation of sampled-data control systems of a suitable type which is widely

used in practice. This system can always be represented in the form of

a system with a sampled-data feedback (Fig. 6).

The signal correcting the controlled quantity is not a continuous

function in the systems under consideration, but "consists of" rectangular

pulses having an identical width _,,T and occurring in equal time inter-

vals T. Assume that the heights of these pulses at the instant of their

appearance are proportional to the value of the error function _(t) = x2

(t) -- x0 (t) -- that is, to the difference between the controlled quantity

and the given quantity.
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Sampled-datasystemshavefound wide applicationin practice,since
they have provedto have severaladvantagesover systemswith conti-
nuousaction.

A basic, elementarycondition of the correct operationof contrcrl
systems,and thus in particular alsoof sampled-datacontrol systems,is
their stability. It is known that the stability of a dynamical system
consistsin the property of its pulseresponse(the function of the input
signalactuatedby the excitationin the form of the Dirac function) being
a "decaying"function, and thus satisfyingthe condition

lim k (t) -----0. (91)
t-_oo

In the engineering literature known to the present author, the

methods of investigating the stability of sampled-data control systems

are principally based on examining the frequency characteristics of the

system [4]. Since for sampled-data systems it is almost impossible to

determine frequency characteristics experimentally, the methods men-

tioned above are in practice inadequate in these cases _in which the analysis

af a system must be made in terms of the data obtained from measur-
ments.

The method presented below makes it possible to determine the

stability of a sampled-data control system directly from knowledge of

the frequency characteristic of an "open system". Moreover, an analysis

of typical frequency characterisics is made, as a result of which we

arrive at the diagrams determining the "stability zones" of the sampled-

-data control systems under consideration. The results enable us in sever-

al instances to effect the investigation of the stability almost immediately

in terms of the plot of the time characteristic (response to a unit-step

excitation) of an open control system, which can easily be found experi-

mentally. Noted that in the case of systems with continuous action, such

a procedure is often used [9].

The author has shown in [15] that the numerical operator method

can be applied in analysis of sampled-data systems. The method of in-

vestigating sampled-data systems, based on the numerical operator

method, is more general and simpler than that presented in [4] by Y.

Z. Tsypkin; the latter uses the transformation

F (q) -- _ _ (n) e-_n, (92)

where ](n) is a function of a variable integer n (n --_ 0, 1, 2 .... ) and F(q)

is a function of a complex variable q.

It is obvious that the transformation (92) may be u_d only for func-

tions which ensure the convergence of the series
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_)¢ in)e-q". (93)
n=O

It is then impossible to transform the functions

f (n) = n!,

] in) = n_!, i94)

f(n) = e "_, etc.

The numerical operator method does not impose any such restrictions

on the class of the functions f(n).

It was proved in the paper [15] that the "transmission properties"

of a sampled-data system can always be determined by means of what

is called "equation of the sampled-data system"

{xe (n, e)} =g,(p,_){xlin)}, 0<e<l, (95)
where

xe (n, e) -- is a function determining the signal on the output of the

sampled-data system,

xl (n) -- is a sequence of the values of the input signal xl(t) cor-

responding to the moments of generating pulses,

Ki (p, _) -- is the "transfer function" of the system,

Ki(p,e) -- is determined by one of two different formulae

K1 (p, e) or Ku (p, r), depending on whether the real parameter e is con-

tained in the interval [0, ?), or in the interval [y, 1), where ? is the quotient

width of pulses i96)
r = period

A block diagram of the sampled-data system is shown in Fig. 4. This

system consists of two elements in a series connection -- namely, what

are called the "sampler" and the "linear element".

_ Sornpler _-_ Lmeer _,x,(t) _j_L___etement__ot )

Fig. 4. Diagram of a sampled-data system

A sampler may be the signalling key, the electromechanical relay,

the electronic relay, etc. Its task is to perform the transformation of the

continuous function of the input signal xl(t) into a signal in the form

of rectangular pulses with the width ?T and the period T. The heights of

these pulses at the moment of their appearance are not proportional to

the value of the signal xl(t), and thus they are "modulated" by the func-

tion xl(t).
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A linear element may be any linear dynamical system capable, of

transmitting the signal.

Sampled-data systems may be connected in a manner identically to

that used for "ordinary" dynamical systems. A series connection, and,

a connection in a feedback system (Fig. 5, 6, 7) are also possible.

Fig. 5. Series connection of sampled-data systems

Fig. 6. Feedback sampled-

-data system

pel::_f l Controlled ___

object

IMe°su'ing[element

[ J_ "_xo(t )
xt I xf(t)

Fig. 7. Basic diagram of a sampled-da-

ta systems

It can easily be shown that in a sampled-data feedback system

(Fig. 7), the following relation between the signal X2 and X0 holds

K, (p, e) {x0 (n)}" 0 _< e < 1 (97)
{x2(n'e)} -- 1 -F gt(p,O) ' '

where Ki(p, _) is the transfer function of the sampled-data system obtained

by the "opening" of the feedback branch in the function "a" -- that is,

before the sampler. The deduction of the above formula is given in the

annotations.

The relation (97) will be referred to as the "equation of a feedback

sampled-data system", and the expression

gi (P' _) (98)
_g, (p, t) = ] -F gt (p, O)

will be referred to as the "transfer function" of the "characteristic func-

tion" of a feedback sampled-data system.

Each sampled-data control system under consideration may be re-

presented as a feedback sampled-data system, and in this respect the

dynamical properties can always be determined by Formula (97).
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In view of the mannerof the analysisperformed,the author finds it
reasonableto distinguishwhat are called "static" and "astatic" systems.
Sucha classificationof control systems,of course,is not indispensable.

2. DETERMINATION OF THE STABILITY OF A SAMPLED-DATA CONTROL

SYSTEM FROM THE TIME CHARACTERISTIC OF THE OPEN SYSTEM

Let us now discuss a feedback sampled-data system (Fig. 7). If the

feedback circuit is broken before the sampler (at the point a), then we

shall obtain an ordinary sampled-data system the theory of which was

presented in the paper [15].

Let us write the equation of the open system at the point (a)

{x2 (n, _)} = g i (p, _) {xl (n)}.. (99)

Assume now that on its input -- that is, at the point (a) -- an exci-

tation was applied in the form of a unit-step function. Then, on the

output of the sampler there will appear a sequence of rectangular pulses

having identical unit heights; thus we shall write

-- P (100)
{x,(n)} ---- {1} p-- 1'

Hence the signal x_(t) may be defined by the formula

{x2 (n, _)} ---- gi(p, _) p (101)
p--l"

Since a numerical operator can always be represented in the form

of the power series
oo

{a,} = _ a,p -n, (102)
n=O

we shall then obtain

= x2 (n, _)p-" = (1 - p-l) x_ (n, _)p" =
P

n=O n_O

oo

: x 2 (0, e) -_ _ [xe (n, e) -- x2 (n -- 1, e)] p-'. (103)

n=l

From Formula (103), we can determine the frequency characteristic

of the sampled-data system. If --- in accordance with Tsypkin -- we

determine the frequency characteristic B (j_,e)* of the sampled-data

* D detones the dimensionless angular frequency; _ = cot where T, is the period

of the occurrence of pulses.
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system by the formula

B (j_, e) = X_ust (n, _) _ x2 ust(u, _) (104)
xl (n) ce '_" '

where x2 steady (n, e) is a steady component of the output signal x2(n, e)

and

xl (n) = ce j_" (105)

is the excitation signal, then we can easily explain the following prop-

erty. The frequency characteristic B(j_, E) of the sampled-data system
is equal to the expression Ki(ei_, _) obtained by the substitution in the

pulse transfer function K.i(p, e) of the system the function e j_ for the

displacement operator p;

B (jff3, e) : g i (e j_, e). (106)

The above property can be accounted for in terms of the equation of
the sampled-data system, if we assume that xl(n) =cel_n.

After elementary transformations, we obtain (141). This property
follows also from Formula (2-116) given in the paper [4] by Tsypkin, and

from the isomorphism which holds between the numerical operators and

the summation Laplace transformation.

According to (104), the frequency characteristic of a sampled data

system can be determined from knowledge of x2(n, _)

B (j_, e) -_ K i (eJ_, e) : x2 (0, e) -P _. [x2 (n, _) -- x_ (n -- 1, e)]e-i_,,

where x2(n, e) is a function of the output signal actuated by the unit-step
excitation

xl (t) = 1 (t).

If, in turn, we assume that the (open) sampled-data system is stable,
since

lim [x2 (n, _) -- x_ (n -- 1, e)] ----0", (107)
n-_oo

then in Formula (103) we can disregard all the terms having sufficiently

great indices (n _ N), for which

Ex2(n,_) - x_(n - 1, _)l _ _, (108)

where for _ we may in practice accept for example 0.1k or 0.05k (k is the

* This formula is a necessary but not sufficient condition for the stability

of a sampled-data system.
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resultingamplificationin thefeedbackloop).Weshallthenobtainthe ap-
proximateformula

N

Ki(eJ%e)_x2(O,_) + _ [x2 (n, e) -- x_(n-- 1,_)]e -j_n, (109)
n=l

which is sufficiently accurate for determining the stability of a closed

sampled-data system.

In accordance with the results obtained by Tsypkin [4] (pp. 148--155),

the stability of the system is determined from what follows

Theorem. A feedback sampled-data system is stable if and only if

the Nyquist diagram K(e;_,O) of the open system, with a change in w
from --_ to -Pz, does not contain the point --1, j0.

In view of the above considerations, the method of investigating the

stability of a sampled-data control system in terms of the time characteris-

tic x2(n, e) of the open system reduces to

1° determining on the basis of Formula (109) the function K(el% O)

from knowledge of the time characteristic x2(n, e) of the open system,

2° plotting the Nyquist diagram.

The stability of the system is then found on the basis of the theorem

given above.

The Nyquist diagram K(e_%0) can easily be determined by means of

calculating its components

N

Q_)eK (e j°J, 0) : x2 (0, 0) + _ [x2 (n, 0) -- x2 in -- 1, 0)] cos n_,
n=l

N

_,z K (e j'°, 0) --_ -- _ [x_ (n, 0) -- x2 (n -- 1,0)] sin n;.
n=l

(110)

From the above considerations we may draw the interesiting conclu-
sion that the stability of a sampled-data control system is dependent only

and exclusively on the waveform of the time characteristic x2(t-) at the

moments t-- T -- (n= 0,1,2...) -- that is, thewaveform of x2(n,O).

The behavior of the x2(t-) characteristic between the moments t---- n has

absolutely on influence on the stability of the system. This fact becomes

clear if we bear in mind that owing to the presence of the sampler in the

feedback branch, the control system is closed only in the moments t = n.

The waveform of the time characteristic x2(n,e) can of course be

determined experimentally or may be calculated by the analytical meth-

od. It should de emphasized that the method presented is suitable for
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the investigation of systems which are stable after openin_ me feedback

branch -- that is to say, to the investigation of systems containing no
elements with what is called the astatic characteristic.

We shall prove below that this restriction can be avoided in a rela-

tively simple manner. Namely, let us observe that for an (open) sampled- -

-data system with an astatic characteristic and with only one integrating

element, the following condition must be satisfied

where

limAex2(n -- 1, D-= O; O_<e < 1, (111)
n-).oo

A s x2 (n -- 1, _) ---- A [xe (n, _) -- x2 (n -- 1, D] ----

-- x 2 (n -k 1, e) -- 2x2 (n, _) q- x2 (n -- 1, _), (112)

and x2(n, _) is the response of the sampled-data system under considera-

tion to unit-step excitation.

If the formula determining Ki(ei_,, 0) is transformed, so that under the

sign of the sum appear the terms of the form A_x2(n -- 1, 0)e_,, it will be

possible, as in the approximate formula, to have a finite number of com-

ponents in the series. Let us now pursue the following reasoning.

Multiply both sides of Formula (103) by p -- 1; we shall obtain

oo

(p -- 1)gi(p, _) = (p -- 1)x_(O, e) _- (p -- 1) 2 [x2(n' e) -- x_(p -- 1, _)]p-",
n=l

(113)

hence, after elementary transformations

oo

(p -- 1) Ki (p, e) ---- (p -- 1) x2 (0, e) -k Az_ (0, e) -b l A [xe (n, _) -- x_ (n -- 1, e)] p-',
n=l

or

oo

(p -- 1)g,(p,_) = (p -- 1)x_(O,e) _- Ax_(O,e) + I A_x2(n -- 1, _)p-", (114)
tl=l

where

and

4 2x_ (n - 1, _) = A [x_ (n, _) - x2 (n - 1, _)1=

--- x._ (n -k 1, e) - 2x2 (n, e) + x._(n - 1, e) (115)

Ax2 (0, _) = x.z (1, e) -- x2 (0, e). (116)

The frequency characteristic K(eJ_: 0) of an "open" sampled-data

control system may then be expressed by the formula
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oo

K (e 1_, O) -- ei _ 1__1 2 2_ xe (n -- 1, O) e-i_, q- xe (0, O) q- AXeei_,(0,_10). (117)

n=l

Further, using the relation (111) which is correct for a system with an

astatic characteristic, we may in the above formula omit all the terms

with the indices n > N. Then we shall obtain the approximate formula

K(eJ _, O)

N

1 _Aex2(n -- 1, O)e-i_, H-e j_' -- 1

11=1

Ax2 (0, O)
+ x_ (0, O) +

e j_ -- 1 '

We may also deduce formulae determining the components of the

complex function K(e j_, 0). Taking into consideration the obvious realations

_)_e ej_,_l _ = --y, _" e]_ 1 2

and utilizing the formulae defining the components of the product of

complex numbers, we shall obtain:

K (e_, 0) _-_ x2 (0, 0) -- 1 Ax_ (0, 0) -b (120)

N N

1 zF x2 (n -- 1, 0) cos _n -- _- cot A _x2 (n -- 1, 0) sin _n,2
n=l n=l

N

0) ½ )j A2xe(n -- 1, 0) sin_n ÷ (121)

_ M

n=l

N

___ ____-] e i
1 cot _ A x_ (n -- 1, 0) cos _n -- _- cot _- Ax2 (0, 0).2 2

n=l

On the basis of the formulae obtained defining Re K(d _, 0) and

Im K(e j_, 0) it is possible, from knowledge of the time characteristic

x2(n, 0), to determine the plot of the Nyquist diagram of an open sampled-

-data system containing an integrating element (for example, a servo-

motor). Knowing the plot of this diagram in the interval _[--_, _], we

can determine the stability of the control system.

In conclusion, it is worth mentioning that knowledge of the Nyquist

diagram K(e j_', 0) may be useful not only in determining the stability of

a control system. From the plot of the function K(e _', 0), we can also anti-
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cipatewhat correctingelementsshouldbe usedin order to improvethe
quality of the controlprocess.

3. CONDITIONS FOR THE STABILITY OF A STATIC

SAMPLED-DATA CONTROL SYSTEM WITH O TYPICAL CHARACTERISTIC"

The method presented in the preceding chapter may be applied to

any static or astatic sampled-data control system. In spite of its universal-

ity, this method has a certain drawback, since it is necessary to perform

preliminary calculations in order to investigate the stability of a system.
It will be shown below that in the case in which the time characteristic

x2(n, 0) of an open sampled-data control system is typical, as indicated in

Fig. 8a, the stability of the system may be determined directly from the

plot of x2(n, 0) without the necessity to determine the Nyquist diagram

K(e j_, 0). The reasoning is based on the substitution of a simplified char-

acteristic in the form of a broken line in Fig. 8b for the characteristic

in the form of a broken line in Fig. 8b for the characteristic from Fig. 8a.

o
,x}n.o)

gg •

,,14"171iiilii!ill
0 _ 2 3 4 5 6 7

b
x2(n,o)

17

.......II24
) (/f/

2 3 4 5 6 7

Fig. 8. Approximation of the time characteristic of a sampled-data
means of the broken line

N _

system by

The simplified characteristic can be written analytically in the follow-

ing manner

0; n_nl

x.2 (n, 0) : k
n2 -- nl(n -- nl); nl _ n < ne (122)

k; n_n 2

Since the input signal x2(t) is actuated by a unit-step excitation l(t),

then in accordance with the formula presented above, the coefficient k

is equal to the "resultant" amplification in the feedback loop.

Using the numerical operator method, we may express the simplified

characteristic x2(n, 0) by the formula
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{xs(n, 0)}= k p
ns -- nl (p _ 1)_ [p-"' - p-"_], (123)

where p is the displacement operator

Since we assumed that a unit-step excitation was applied to the input

. of the system -- that is,

-- P (124)
{xl(n)} = {1} p -- 1'

then

{xs (n, 0)} k p-., _ p-.2

g (p, O) = {xl_(n ' 0)}---- us -- nl p - 1 _" (125)

Substituting into the above formula for the place of the displacement

operator p the function e j_, we shall obtain the expression K(e _, 0) which

determines the frequency characteristic of the open control system

k e-p°nl -- e-i_n"
K(e i_, 0) .... (126)

Us _ nl eJ_, -- 1

By virtue of the theorem cited in the preceding chapter, the stability

limit of the system is determined from the conditions

a) h_eK(e j_,0)=- 1,
(127)

b) 3.z K (e jo_,0) = 0

For this purpose we shall investigate the roots of the equation

K(e i_°,0) -}- 1 = 0. (128)

Taking into consideration in the above equation the expression (126),

we shall arrive at

k (e-i_', -- e-i_2) _ (n s -- nl)(ei_ -- 1)= 0, (129)

and hence after performing considerable elementary trigonometric trans-

formations, we shall obtain the following relations (c) and (d)

c) 2k sin _a sin _fl -- (n s -- n,) (cos _ -- 1) -----0, (130)
d) 2k cos _a sin _fl -- (n s -- n,) sin D ---- 0,

where

n_ _- n2 n, -- ns
a-- 2 ' fl--" 2

The above relations will be treated as a set of two equations with

two unknowns: _ and k. Dividing equation (c) by (d),we shall find the

unknown _:

cos_ -- 1 _ tan _'-fftan _a -- sin (131)
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whence

Further,

known k

+ (v + 1);t" v = O, -+ 1, + 2,...
_-- 2

(v -}- 1) 2_ (132)
= _ = 2 :_ n__--'_ "

for example from equation (d), we shall determine the un-

sin _v

k = kv= (,_ - ,_1)_os _sin Co;-}_=

(v + I)2zc

sin-1+n-1 + n_ ........... . (133)

= nl-n__ (v+l)(n2 -- nl)- _nl t n_ (,, + 1)_sin
2cos l+n_+n2 l+nl+nz

This formula can be simplified. Namely, if we take into considera-

tion the obvious relation

1 (134)
nt + n2 = 1 ..... ,

1--_-nl + n2 1 -5 n, + .rt__

whence
(v+ I)_ (135)

cos n_+n._ (v+l)_=(-1) _+lc°sl+n_+n2'
1 + n, + n_

and, further, if we introduce the transformation

(v + 1)_r (v + 1)_ (136)
(v+l) 2z_ _2sin cos _-q_nT+n_,

sin _._ n, -5 n_ 1 + nl + n_

then we shall obtain a simple defining k ;

(v + 1)_:
sin : ........

1 .+ nl + n2 ....... . (137)
k_ = (-- 1),, (hi -- nl) -

n_-n, (v+l)_sin ......
1 + n, + n2

This formula is ambiguous and determines the stability conditions

for the particular components of the control process. Since we are consid-

ering a system with a negative feedback (which is indispensable in the
case of every control system), of interest to us in the formula obtained

are only those values of the number _, which yield positive values of the

coefficient k , with nl and n2 as assumed. Thus, for example, we should

not take into consideration those values of v, for which the expression
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v-_-1 (138)
1 + n, + n_

isan integral number. For we can verify that then k, ------ I.

For the fundamental component k0,we shallobtain the formula

sin

k0 = (n2 -- n,) 1 -9 n, + n2 (139)

sin n2 -- nl

1 -9 nl -9 nz

It can be shown that this formula gives the lowest value of the coef-

ficient k, _ 0. In view of the above, Formula (139) determines the greatest

admissible amplification in the feedback loop. For the amplification k _ k0,

the system is unstable. Figure 9 shows the plots of the function

k o = )_(n,, n_), (140)

where nl is treated as a parameter and n2 -- as an independent variable.

Making use of these plots we can easily determine the stability of a stat-

ic sampled-data control system from the knowledge of the time charac-

teristic xz(n, 0) of the open system. Note that k0 is not a function of the

ratio of the "delay" time to the "steady-state" time n-A_. From the plot
n2

of the function ko = f(n_, nz), it follows that, with nl as assumed the

20

10

5

/'<o Sin

ko=fnz_n_) _" n,* n2
$1f) fl._-fl, 27

l+n,+n z

) ; ,'o _o ;o ,_o o2 _

ig. 9. Stability limits of a static sampled-
-data control system

greater is nz, that is the slower the time characteristic of the open system

increases, the greater the amplification is possible to apply. Of course, we

are able to influence the speed of the increase of the time characteristic
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x_(n, 0) by changing the width r of the rectangular pulses generated by

the sampler.

The method presented for determining stability does not require any

preliminary calculations.

4. STABILITY CONDITIONS FOR AN ASTATIC SAMPLED-DATA CONTROL

SYSTEM WITH A TYPICAL CHARAKTERISTIC

Below, we shall discuss the stability of an astatic sampled-data con-

trol system. The analysis performed is based on the assumption that the

waveform of the time characteristic xa(n, 0) (response to a unit-step
excitation) has the shape indicated in Fig. 10a. Such a characteristic can

be obtained experimentally or can be determined in a simple manner by

the analytical graphical method.

a b
L

xe(n,O) x2(n,O)

II/ l

¢ /

3k ............ _

/ 2/( ........

t k

0 _ 2 3 4 5 n _ 2 3 4 6 n _

Fig. 10. Approximation of the time characteristic of an

astatic sampled-data system by means of the broken line

It should be noted that, as for static systems, the stability of a system
depends only on the plot of the characteristic x2(n, e) at the moments

n = 0, 1, 2 .... and e----0, that is, the plot of the characteristic xz(n, 0).

The behavior of the characteristic x2(n, 0 between the points n----

---0, 1, 2.... has absolutely no bearing on the stability of the system.

Thus the method presented may be used for a relatively large class of
astatic sampled-data control systems encountered in practice.

In our considerations, we shall replace the characteristic x2(n, O)

(Fig. 10a) by a simplified characteristic in the form of a straight line
(Fig 10b); we shall then assume that

{x_(v,0)} =/_ O; n<no (141)
tk (n -- no); n _ no.
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Since we have

there will be

and

P (142)
{n} -- (p _ 1)2,

{x2 (n, 0)) = k ___ p-no

--n 0

K(p, 0) = p P--1 {xf(n, 0)} = kP_. (143)

The frequency characteristic of an open control system (correspond-

ing to the moments s = 0) will be obtained by substituting for the displa-

ment operator p the function e j_

e-J_no
K (ei_, 0) = k . (144)

e J_ -- I"

Similarly as in the preceding chapter, the
determined from the conditions

a) "]_ K (e J% O) ---- -- 1,

b) 3,, K (ei_o, 0) ---- 0.

stability limit will be

(145)

Taking into consideration (144), we shall obtain

e_J_n_ _

k

= (cos _ -- 1)2 ÷ sin e _ [cos _no (cos _ -- 1) -- sin _)n 0sin _],

I e_J_no __,_ K (eJ_, O)= _,_mk e__ lj

k
[cos _n0" sin _ -b sin _n0 (cos _ -- 1)].

------ (cos_ -- 1)2 + sinf_

The conditions (a) and (b) lead then to the following equations (c)

and (d)

c) k [sin _ sin _no -- (cos _ -- 1) cos _no] = (cos _ - 1)e q- sin e _, (146)
d) sin _ cos _n0 ÷ (cos _ -- 1) -- sin _n0 ---- 0.

After considerable elementary trigonometric transformations, we

shall arrive at a simpler equation _ namely
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c') ksin(_no+-_l, --, -----2 sin" -_-,_

(1.47)

d') cos (_n0 + 2) = 0.

The above equations will be solved with respect to the unknowns

and k. From (d') it follows that

_n0 -t- _- -= -2- + v_,

where v is any integral number.
Hence

1W2v

1 + 2n o

Substituting _ into equation (c'), we shall then find the unknown k

2 sin-

k----kv= 2 ----(--1)'2sin 1-4-2v _ (148)

sin(_noA_2 ) l+2no 2"

It can easily be shown that in this case also the smallest non-neg-

ative value of k, will be obtained for the fundamental component of the

control process -- that is, for v = 0. The greatest admissible inclination

of the time characteristic x2(n, 0) of an open control system is then k0

1

k0 = 2 sin i + 2_no 2 " (149)

The function k0 = f(n0) is shown in Fig. II From the plot of this

function, we conclude that the greatest admissible inclination of the time

characteristic of an open sampled-data control system decreases with

increase in no -- that is, with increase of the delay introduced by the

system.

k° l• ko=2Sm. I . . ___
Zno+ 1 2

'
nstobility reqion

5tnbilitq reqion __/_ ,/
/i.

O_ 05 # 2 5 tO 20 30 Do

Fig. 11. Stability limit of an astatic sampled-data system
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The method presentedfor determining stability is convenientpri-
marily whenthe time characteristicx2(n, 0) of an open control system is

determined experimentally. If, for this or that reasons, experimental

determination of the above characteristic is impossible, the characteris-

tic can be calculated analytically -- for example, by means of the method

presented in [15]. Then we use the equation of a sampled-data system

and we assume that

{x2 (n, 0)} = Kl (P, 0) {xl (n)}

{x_(n)} = {1}- P
p--l"

The characteristic x2(n, 0) of an open sampled-data control system

may also be determined by the graphical-analytical method; namely, we

, x2CO,xJn,O) _j
_+" I

k=-77'

I I --T, /-: I t
/l i I I IlLi

"/ 21 31 41 5! 6 I

I I I I I

I I I I I

  +nhhhh:"t=

0 f 2 3 4 5 6

Fig. 12. Time characteristic of an asta-
tic sampled-data system with a delay-

ing element

I ' '
x/t).xJn.o) ,

o ,; 2; d, +, 5;
I i

6 7

T

i i I
I I I I

[1 FIFl':÷
o _' 2 3 4 5 6 7

Fig. 13. Time characteristic of an astatic
sampled-data system with an inertial ele-

ment

may add graphically the responses hr (t) = h(t) ÷ -- h(t -- 7T) of the linear

part of the system to rectangular pulses with the width 7T which are

displaced with respect one to another by the period T.

It is clear that an influence on the inclination of the characteristic

x2(n, 0) is exerted by changing the width of the rectangular pulses --

that is, by the change of the parametr y. It can easily be seen that the

inclination of x2(n, 0) decreases with a decrease in the parametr 7.

79



Simple astatic systemsand their time characteristicsx2(t), x2(n, 0)

are pressented in Figs. 12 and 13.

Note that in the case of the system from Fig. 12, between the inclina-

tion k0 of the characteristic x2(n, 0) and the width of the pulses, a simple
relation holds

7
k 0 -- T1.

Using this formula, we can find the greatest admissible width of

pulses for a system with the characteristic shown in Fig. 12. The control

system of gas pressure may serve as an example for a system with such

a characteristic. An example for a system with the characteristic shown

in Fig. 13 may be the temperature control system.

PART III

CALCULATION OF TRANSIENTS BY A NUMERICAL METHOD

1. INTRODUCTION

In dealing with the problems of transients, we often use approximate

methods -- for example, graphical-analytical methods which in several

cases reduce and simplify the calculations. These methods are at present

being developed by numerous authors and have found wide applications

in practice. In particular, they are extensively applied in control engi-

neering -- namely, in the problems of control systems. Of interest here

are the methods advanced by a Russian author, L. A. Bashkirov [2], which

is designed for an approximate solution of differential equations with

constant or variable coefficients, the method of U.A. Bailey and what is

called the ,,method of moments".

An interesting approximate method for calculating transients was

presented by Tustin [13]. This is a numerical method in which continuous

functions are approximated by means of functions "constructed" of

elementary functions in the form of triangles. Using such an approxima-

tion, Tustin calculates numerically the time waveforms in control sys-
tems.

Tustin's method could (as regards its mathematical aspect) be set

into correspondence with the numerical calculation of the inverse Laplace
transformation

](t) = L -1 {F(s)},
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where F(s) is a rational function of the complex variable s, which charac-

terizes the properties of the system under investigation which are of in-
terest to us.

We shall show in Chapter 4 that this problem can be reduced to

"a numerical calculation of the integral equation of the form

t

f y( )1s(t- --I,(t),
0

where 11(t) and f2(t) are the given polynomials of the real variable t

(Eqs. 162).

Approximating the continuous functions fl(t) and Is(t) by step func-

tions, we can replace the above integral equation by a set of linear equa-
tions of the form

f(m)fs(n -- m) = 11(n), n -- 0, 1,2,..., (150)

from which the values of the function f(n) can be found algebraically.
It should be noted that the expression (150) uniquely determines the

product of the numerical operators ](n) and Is(n) in the case in which

f(n), Is(n)----0 for n < 0. Hence the method presented above (which is

a numerical method for calculating the convolution of functions) may be

considered as one of the applications of numerical operators.

In the chapters which follow, we present a numerical method for

calculating transients, which is based on the substitution of the expres-

sion (150) for the convolution of functions.

The theoretical foundations of the method and examples of appli-

cations are given in the book; however, no discussion on the accuracy of

results is presented. An unquestionable advantage of the method is its

great simplicity and the possibility of arriving easily at the results. On
the other hand, it should be stressed that the method has a drawback in

that it does not enable discussion as to the influence of the parameters of

the system under investigation on the result obtained. Even so, in certain

practical problems the method can be of great value.

2. APPROXIMATION OF A CONVOLUTION OF FUNCTIONS BY A QUOTIENT

OF NUMERICAL OPERATORS

Assume that on the input of an arbitrary electric four-pole having

linear elements a voltage of any shape is applied. This voltage may be

approximated by a sequence of elementary rectangular pulses applied to

the four-pole at equal time intervals LJv. The rectangular pulses cause

6 Published papers 81



certain elementary transients on the output of the four-pole. The input

voltage of the four-pole may be considered as a result of the superposi-

tion of these elementary transients (Fig. 14).
x

xtt]

___;-_ J _i J i _-_

.,t _

Z_r

Fig. 14. Approximation of the time characteristic of
a four-pole by means of a step function

Each rectangular voltage pulse having time of duration AT can be

expressed as the difference of two unit-step jumps of voltage connected
at the moments t and t + AT.

If the reaction of the system to the unit-step jump is denoted by the

symbol h(t), then the elementary output signal r(t) due to the application

of a signal in the form of the rectangular pulse on the input of the four-

-pole will be expressed by the formula

r(t) _- h(t) -- h(t -- AT). (151)

Assuming in turn that AT = 1 and t = n + _, we shall obtain

r(n + _) : h(n -t- _) -- h(n + _ -- 1), (152)

wheren= 0,1,3 ..... 0_<1.

The relation (152) may be written in terms of the numerical operator

{r[n,e]} : {h[n, _]} -- {h[n -- 1,_]} = }V h[n,_]}. (153)

If we confine ourselves to determining only certain particular points

of the curve r(t), then we can assume in Formula (153) that _ = 0, and

consequently we shall obtain

{r°}= {h.}- {h._,}= {Vh°}. (154)
The output signal will -- in accordance with the previous considera-

tions -- be a superposition of all the elementary signals r(t) caused by

the particular rectangular pulses. This signal may, then, be expressed

by the formula
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t

" x (t) -_ lim 2 ] (3) zl_r (t -- T), (155)

whence

t

z (t) = f f (3)r (t - 3)dr. (156)
0

Formula (156) in the operator calculus is referred to as the "convolu-

tion of functions".

If, in Formula (155), we do not pass to the limit, we shall obtain an

approximate value of the convolution -- the higher the accuracy, the

lower the width of rectangular pulses by which we approximate the func-

tion f(t). The approximate value of the convolution may be represented

by the formula

m=O

or, if we want to determine only certain particular points of the curve

X(t), we may assume that e ---- 0 and accordingly Formula (157) will take
the form

m=O

that is,

or, after using Eq. (154)

{X,} = {],} {r,} (159)

{X,} = {In} {V hn}. (160)

Thus if we know the shape of the input voltage signal of the four-

pole -- the function f(t), and if we know the reaction of the four-pole to

the voltage jump -- the function h(t), then the signal at the output of the

four-pole can be represented approximately by means of the product of

the numerical operators {]_} and {Vh_} formed from the functions ](t)

and h(t). Similarly, if we have an electric two-pole, then knowing the

shape of the voltage signal of the source the function f(t), and knowing

the reaction of the two-pole to the voltage jump (the function h(t)), we can

approximately determine the function of the current in the two-pole as

the product of the numerical operators {f,} and { Vhn}, which are formed

from the functions f(t) and h(t).

The multiplication of numerical operators can easily be performed
by means of the notation indicated in Table 1.
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Table 1

Multiplication of numerical, opera-

tors

a L 0 18 15 12 10 _ I 7 5
^

b I0 1 2,3 4 5JO 1

__ 0 0 0 [ 0 0 0 0 0

V V 36 30 24 ]20 16

--o__

...... o_
- oo

J - d i-l-d-po

3. EXAMPLES

Example 1

A saw-like voltage was applied to a two-pole consisting of the

elements R, L in a _eries connection (Fig. 15). Determine the function of

the current i(t).

_v

_7

2 4 5 8 10 t2 f4 15 f8 20 22 24

Fig. 15. Approximation of a triangular plot by means

of a step function with deficiency and with excess

Solution

(a) We determine the reaction of the system to the unit-step function

by well-known methods, obtaining

R t

1<1e ,', 1<1
L

where 7' --
R
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(b) Knowing the numerical values of the constants R and T, we

draw the function h(t) on a profile paper (Fig. 16).

(c) We draw the plot of the driving voltage also on a profile paper

(Fig. 15).

(d) We divide the time interval from the moment t ---- 0 to the steady-

state moment of the plot h(t) into a certain number of equal parts (the

division on our drawing is into twenty five parts); we also divide the

abscissa axis of the plot h(t) into a certain number of equal parts (on

our drawing we have one hundred such parts).

h(tl

8_

60

II

0

R L

,lllll'lll
_0 15 20 25

Fig. 16. Time characteristic of an R L two-pole

(e) The time axis of the plot )_(t) is divided in a manner identical

with that for the time axis of the plot h(t). The abscissa axis of the

plot /(t) may also be divided only into equal segments, but on an arbi-

trarily chosen scale.

(f) Form the value of the function h(t), we form a numerical oper-

ator -- in accordance with the division performed; we obtain

{h,} ---- 0, 18, 33, 45, 55, 63, 70, 76, 81, 85, 87, 89, 91, 93, 95, 96, 97, 98, 99, 99, 99...

(g) We determine the difference operator {Vh,}:

{V h,} _ 0, 18, 15, 12, 10,8, 7, 6, 5,4, 2, 2, 2,2, 2, 1, 1, 1, 1, 0,0,...

(h) From the values of the function f(t), we form a numerical oper-
ator

(a) with deficiency

}, = {1,n}= o, 1,2,3,4,5, 0,1, 2,3,4,5, 0,1,2,3,4, ,0,1,2,3,4,5 ....

(b) with excess
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f2 = {]2n} = i, 2,3,4,5,6, 1,2,3,4,5,6,1,2,3,4,5, 6,...

i, 2, 3, 4, 5, 6, ...

(i) By the "arithmetical method" we perform the multiplication of

the operators

a) 2, = (V h.}

b)2.= {V h.}

The operators 21, 22 determine the current signal i(t)sought for,

with deficiency and with excess,respectively.

Note that we may avoid the determination of the signal with excess

and with deficiency -- that is,the twofold multiplication of the opera-

t°rs-- if we f°rm the intermediate °perat°r {';"}=/"+f'" }2 and

perform the multiplication {fi't} {Vh.}. In our example the inter-

mediate operator f;.t will take the form

A 1 1 1 1 1 1 1 1 1 1 1 1

f;,t = -2-, 1 _-, 2 _-, 3 _-, 4 _-, 5 _-,_-, 1-_, 2 _-, 3 _-, 4 _, 5 _-,...

Fig. 17 shows the diagrams of the current signal sought for; the

curve (a) indicates the signal calculated with excess, the curve (b) --

with deficiency, and the curve (c) -- the intermediate signal. The results

3OO

2OO

_oo

R L

o

tiff//

5 _o 15 20 25

Fig. 17. PIot of the current in an RL two-pole caused by a saw-like voltage.

The curve (a) shows the plot calculated with excess; the curve (b) -- with defi-

ciency; and the curve (c) -- the mean plot. The circles indicate the values of

the current as calcu'lated analytically

obtained above were verified by means of the analytical method. The

points of the plot i(t) determined analytically are denoted on the Figure

by circles.
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Example 2

On the output of the four-pole R, C, which is shown in Fig. 18, a

signal of the full-wave rectified voltage U = I sin _ot I was applied. De-

- termine the output function U2(t), with the assumption that the four-pole

is open-circuited.

_0_

,h(t)

60 / '

20

O 3

r,

i

fO t5 20 25

Fig. 18. Time characteristic of an RC two-section
four-pole

Solution

The characteristic function of the four-pole is expressed by the

formula

1 1
K (s) --

a8 2 -]- bs ÷ 1 a (s -- a1) (s - a2)'

where

a = R1 C1 R2 C2 ; b = R1 C1 + R2 C2 -Jr R1 C2 ;

-- b +- lib 2 -- 4a
al, _2 = 2a

Hence the response of the four-pole to the excitation by a unit-step

function will be

h(0 = 1 + + .
{ 0¢1 0¢2 O_1 (0_I -- 0¢2) 0¢ 2 (0¢ 2 -- 0¢I

The function h(t) with the values assumed for Ri, R2, C1, C2 is given

in Fig. 19.
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In accordancewith the chosendivision of the abscissaaxesand
the coordinateaxes,we obtain the following numericalsequenceformed
from thevaluesof thefunctionh(t)

{h,} = 0, 6, 18, 34, 46, 54, 62, 69, 75, 80, 83, 86, 89, 91, 92, 95, 96, 97, 98, 99,...

and after performing the difference operation

{Vh,} = 0, 6, 12, 16,8, 8, 7,6,5,3, 3,2, 1.5, 1.5, 1, 1, 1, 1,0.5,0.5,0, 0,...

The voltage U ---- _(t) is replaced by the following sequence

{,,i,t} = If" +2 '_'} = 26, 71,97,97, 71,26, 71,97,97, 71,26,...

Thus, after performing the multiplication,

{V2 (n)} = {V h,} {], i,,} = 0, 156, 738, 1850, 3194, 4202, 4290, 4211, 4204, 4741

5664, 6265, 6175, 5652, 5317, 5662, 6327, 6873, 6673,

6088, 5705, 6002, 6707, 7067,...

The voltage signal U2(t) is shown in Fig. 19.

Example 3

Uf_ R, Rz
t..._ U,_U_

U2 ,

7

6

5

4

3

2

f

D

5 /0 _5 20 25

Fig. 19. Plot of the voltage on the output of
an RC two-section four-pole caused by a

full-wave rectified sinusoidal voltage

A sequence of rectangular pulses was applied on the input of the

R C amplifier presented in Fig. 20. Determine, by the numerical method,

the output function for two cases -- namely, for a one-stage amplifier

and a two-stage amplifier.
Solution

The characteristic function of a one-stage amplifier with the assump-

tion of a small input capacity of the valve, will take the form
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where

K 1 (s) -- sko
1'

s+_-

ko ----Si Ro, T ---- C2 (Rs + Rag) ;

Rs _ R_i R_
• Ro__ ;

Rai Ra -_ Qa ' Rai'_- R_

Si is the inclination of the characteristic.

a
1

__ , _ ca 9 o
I

c,_ u,

o I _) o
I I

Fig. 20. Time characteristic of a one-stage and a two-stage resistance am-

plifier

The response of the system of a one-stage amplifier to a unit-step

function may easily be determined in terms of the Laplace transforma-
tion

hl(t)=L -1 =koe r_.

In the case of a two-stage amplifier the characteristic function K(s)

will be equal to the product

K (s) ---- K1 (s)" K2 (s),

and if the stages are identical

2 2

K(s)----KI(s): K o

Hence

1
where a ---- --

T

• 9 S2

h2(t): L-l] k_) /- 1_,'-"1

I

82

-_ ko(1 -- a)e ,_,

89



Figure 21 showsthe function hi(t) and h2(t) with the assumption

that R = 100 k_, Ra = 30 k_, Ri = 30 kQ, C2 = 30000pF.

fO0

\

60

t
40

2O

i

i

i

From the functions hi(t) and h2(t), in accordance with the division

of the time axis and abscissa axis as assumed, we form the following

two numerical sequences

{hi,} = 100, 83, 67, 55, 45, 37, 30, 25, 10, 16, 13, 20, 8, 6, 5, 4, 3, 2, 1, 0, 0, ...,

{h_,}-- i00, 65, 40, 24, i0, 0, --6, --i0, --12, --12.5,--13, --II, --i0, --9, ....

Further, we determine {V h,,} and{V h2,};

{V hl,} = i00,--17,--16,--12,--i0,--8,--7,--5,--5,--4,--3,--2,--2,--I,

--i, --I, --I,0,0,...,

{_ h2,} = 100, --35, --25, --16, --14, --i0, --6, --4, --2, --0.5,--0.5,0.5,50,

1,i,....

The voltage hi(t) is replaced by the following numerical sequence

{].} =1,1,0,0,1,1,0,0,1,1,0,0 .....

Then, in order to determine the functions U2(t) and U3(t) for a one-

stage amplifier and a two-stage amplifier, we perform the multiplication

{U_(n)} = {_ h,,}. {J,}, and {U 3(n)} = {V h2,}" {],}.

The results are shown in Figs. 22 and 23.
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* t0C

i-hrihhh,60 - - - - 60

40 40

20 20

o t o

-60 --- - ........... 60

-80 -80

Fig. 22. Sequence of rectangular pulses

after passing through a one-stage resist-

ance amplifier

Fig. 23. Sequence of rectangular

pulses after passing through a two-

-stage resistance amplifier

4. NUMERICAL CALCULATION OF THE RESPONSE OF A SYSTEM

TO A UNIT-STEP EXCITATION

The numerical calculation of transients by the method presented

in the preceding chapter requires knowledge of the excitation function

and the time characteristic h(t) of the electric system. It should be noted

that the determination of the characteristic h(t) in the case of systems
containing a great number of elements (owing to which the degree of

the denominator in the characteristic function K(s) of the system is

high) may present serious difficulties. Thus if great accuracy is not re-
quired, it is convenient in such cases to calculate the time characteristic

h(t) by the numerical method also. Since the function h(t) is related
with the characteristic function K(s) of the system by the Laplace trans-
formation

then the numerical determination of the function h(t) may be subordi-

nated to a wider problem -- namely, to the numerical method of calcu-

lating the results of the inverse Laplace transformation. Below is pres-
ented the idea of the numerical method of calculating the Laplace trans-

formation, which constitutes a continuation of the method described in

the preceding chapter.

In the case in which K(s) is a rational function, which occurs when

the electric system under consideration consists of lumped elements,
we have
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1
K (s) bo s _ + ... -b b_ bo _- -_ ... -b b_ s_,+1

s ao s, -}- ... -+- a, 1 1
ao-- + • • • + at, s.+----Ys

Then h(t) satisfies the equation

L {f, (t)}
L {h (t)} ---- L {]2-(t)} '

where the functions ]l(t) and f2(t) are the polynomials

(161)

b0 bl t,-_+l b_ t,
f,(t)-- (/__ v)!t"-_÷ (# -- v + I)} + "'" ÷ _.' '

(162)

al a n tF,
f2(t) = a0 q- _t -{-... -k _ .

By virtue of Eq. (161), the function h(t) being sought will evidently

satisfy the integral formula

t

J" h (z). f2 (t -- z) d_ ----J, (t),
0

which in accordance with the considerations from the preceding chapter

can be calculated in an approximate manner by the numerical operator

method. The problem reduces to determining the quotient of two nu-

merical operators

{h =

where _q_(Tn)----_(vn)- _[T(n- I)] is a sequence formed from the
t

function _(t)----ff2(})d},and ],(Tn) is a sequence of the values of the
0

function ]2(t).

The method presented above was checked by the author by way of

several practical examples. As a result of the investigations effected, it

has been proved that the method is convenient in applications when the

function h(t) sought for is what is called a "slowly varying" function,

and this takes place in R C or R L systems s).To obtain sufficientlyaccu-

rate results, the method presented requires, however, that the calcula-

tions be performed with a degree of accuracy up to the fourth or even

3) The influence of the accuracy of the terms-sequences {an) and (bn} on the
(an}

accuracy of the terms of the quotient {Xn} =-- - may in relatively simple manner
{bn}

be determined from Formulae (9) with the assumption that p----k----0.

92



fifth decimal point, and consequently the calculations cannot be per-

formed by means of a sliding scale. The method is convenient for cal-

culating the operation inverse to convolution in the cases in which the

.functions fl(t)and f2(t) are given in the form of diagrams.

It is also possible, as regards the calculation of the Laplace trans-

formation, to use what is called the "method of moments" [16]. This
method is set out below.

Let the symbol _(t) be the pulse Dirac delta function. This function

is usually determined in the engineering literature as the limit of a

certain continuous function _(t, 2), for instance

(t) = lim _ (t, 2) = lim _ e-_ t2.

It is known that the arbitrary function x(t) of the real variable t

occurring in physics problems can be expressed by means of the pulse

function 3(t) as

x (3) _ (t -- 3) d_

x (t) = 0

f (_(t -- T) dr
0

If the pulse function (_(t) in the above formula is replaced by the con-

tinuous function g(t) possessing a "sharp" maximum at the point t = 3,

then we shall obtain an approximate formula. As g(t) we shall assume
the function the -at

g (t) = t n e-_t .

This function has maximal value at the point t = n/a. We shall then
obtain the relation

; x (_)- r n e-_ dr
n 0 Xan

x(/_,).-_
r)o

f z" e-_'_dv n!/a"+l '
0

where

x_. = f x(O.r"e-_'dr.
0

It appears that, because of the asymmetry of the function g(t) near

the maximal value, a more accurate formula will be obtained if, in

x(n/a), we assume n + 1 instead of n

x -- nf.]aG+l . (163)
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Let us observethat the expressionx_, is related in a simple manner

with the Laplace transformation of the function x(t). For we have

oo oo

-- x(t)e-_tdt= I x(t).(-- 1)'tne-_tdt=( - 1)"x_,, (164)
J

0 0

where X(s) is the Laplace transformation of the function x(t).

1
If for a we assume the real number --

T

1

T

then taking into consideration Equations (164) and (163), we shall obtain

l[d'X(s) l (165)x [(n + 1) 3] --_ (-- 1)" n! Tn+l ds" s= ±
v

This formula determines the relation between the values of the function

x(t) at the points 3, 23 .... (n 4- 1)3, and its Laplace image X(s).

d'X(s)/ is a coefficient of the n-th in the ex-Since -ds J_=
power

v

pansion X(s + 1/3)

X(s + l/z) = Co + c,s + c,,s2... + CnS n + ...,

thus Formula (165) may also be written as

c. (166)x[(n 4- 1)T]_(-- 1) n Tn+l .

Using Formula (166) we may, in a simple manner, determine the

sequence of approximated values of the function x(t) directly from

knowledge of the coefficients of the expansion of X (s 4- l/T) into a power

series. This procedure will be explained by the simplest possible example.
Let us consider the function

1
x is) -

s--l"

Assuming that _ = 10 -1 sec, we calculate

1 1 s s e
X(s4- 1/,) ---- X (s 4- 10)--s4- 9-- 9 92 4- 9--_-''"

We thus have

1

Cn = (--1)" g,÷l:

The final result is obtained by the use of the Formula (107)
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10
x(O.1) _-_- _ 1.11,

100
x(0,2) _ 8---_ _ 1.235,

1000
x(0.3) _ 7-_-6- _ 1.371,

10000
x(0.4) _ 6560 _ 1.525,

In order to check the accuracy of the result obtained, we now cal-

culate the values of x[(n + l)v] analytically.

Since x(t)= L-1ls--_-ll = e',

x(O.1) = e°,l_ 1.105,

x (0.2) = e °,2 _ 1.222,

x(0.3) =- e°,3_ 1.350,

x (0,4) = e °,4_ 1.492,

Comparing the results obtained analytically with those yielded by

the approximate method, we can state that the maximal error of the

approximate calculations does not exceed 2.5%.

In practical problems the function X(s) most frequently has the ra-
tional form

P(s) bo+bls+-"+b_s _ .

X(s)-- Q(s) -d o+als+...+d_s_' tt _v"

In order to calculate the displaced function X(s + 1/_), we have to

( 1)=determine the expansion of a certain number of expressions s +

We use in these calculations the Newton formula

(a + b)" -_ am _- ma m-1 b --}-m (m -- 1) am-2 b2 + ... + ma. bm-1 + b".
2!

/ 1\

If the function X(s)is rational, then X(s +-_-)is evidently a ra-

tional function, also

X(s+ 1/_)= bo+bls+...+bs" .
ao+a ls+...+asÈ '

ao =riO; tt_.
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The coefficients cn of the expansion of the rational function X(s _ i/_)

into a power series can be simply calculeted by "dividing" (in the sense

of numerical operators) the sequence (bn}-----b0, bl .... by, 0, 0 by the

sequence {an} ----a0, al .... a, 0, 0, since we have

{c.} -- {bn} _ Do aobl -- boa1 (167)
{ao} a0' '""

The calculation of the quotient (167) can conveniently be performed

according to the scheme shown in Table 2.

_18;51;96;151;"" 1; 2; 3; 4;...

18;36;54; 72;...I =18;15;12;10;...

= 15;42; 79;...

15;30; 45;...

= 12; 34;...

12; 24;...

= 10

10

Concluding the description of the method presented above, it is worth

while to discuss the problem of selection in the calculations of the num-
ber T. Since v is the distance between the calculated values of x[(n • 1)_]

of the sought for function x(L) ----L-I(X(s)}, then it is evident that the

greater the accuracy of the result obtained, the smaller the number

selected. It should be noted that an erroneous r may lead to erroneous

results, especially when the function x(t) is a "rapidly varying" function.

Therefore, before starting the calculations, it is necessary if we have no

sufficient information as to the plot of the function x(t), and in order to
ensure the correctness of the result, to carry out calculations correspond-

ing to two different values of the number T (for example, T = 1/10 sec

and v----1/20 sec). If however, the calculation of the transformation
L-I(X(s)} is effected in connection with the solution of a concrete physical

problem (for example, in connection with the determination of the

response of a system to a unitstep excitation), we have from the conditions

of the given problem a sufficient orientation as to the choice of the
number 3.

Finally, it should be noted that -- in accordance with the quotient

(167) -- the method presented here also leads to an operation analogous

to the division of numerical operators. The application of the method to

determining the time characteristic is illustrated by the following
example.
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Example

Determine by the approximate method the response h(t) of the sys-

tem to a unit-step excitation, with the assumption that the characteristic

function of the system K(s) is expressed by

10 ÷ 2s ÷ 7s _

K (s) = 24 ÷ 26s + 9s'-' +s 3"

Solution

It is known that the response of a system to a unit-step excitation

is related with the characteristic function K(s) of the system by the For-

mula

Thus, in order to determine the points of the plot h(t), we investigate

the expression

y__ K(s) _ 10 + 2s + 7s 2
-- "-' s 24s + 26s 2 + 9s 3 --I-s4 "

Assuming that _ = 0.1 sec, we calculate the displaced function

X (s + 10); after computations, we obtain

730 ÷ 142s ÷ 7s 2

X(s + 10) = 21840 -_- 7244s -_- 896s 2 + 49s 3 -_- s4 "

Then, dividing the sequences of coefficients

{b,} = 730; 142; 7;0;0;0;...,

{a,} = 21840; 7244; 896; 49; 1; 0; 0;0;...,
we obtain

{c,} = {b"---!= 0.334.10-1; 0.458.10-2; 0.485.10-3; 1.00.10-4; 1.64.10 -5
{a,I "'"

By virtue of Formula (166), we then have

h(0.1)_ 0,334.10 -I _ 0.334,
T

h(0.2) -- 0,458.10 -_
_ -- 0.458,

h (0.3)_ 0,485.10 -3
T3 -- 0.485,

1.00.10 -4
h(0,4)_ _4 -- 1.O0,

1.64- 10 -5
h(0,5)_ _5 -- 1.64,
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Table of numerical operators

No. {a.) n/> 0 F (p)

: (l)

Table 3

(_)

{n 2}

{n s}

{n*}

(n(,)) = ( _ (_ - 1)

{n (n - 1) (n - 2)}(n(,))= i s!

(n(_))--{ _(n-1)...(,_-_+m! 1)}

9 (C,,,}

10 ( (-- C),zn)

11 {nC_ (n-l)} ; n _ 1

12

13

14

15

16

17

{ (n -- 1) C_ (n-._) } ; n I> 2

{n 2 • C _(n-,));n_l

{n(2) C, (n-2) } ; n >i 2

{n(m) Ca (n-m) } ; n _ m

{e,n}

{e]xn)

i

!

{

I

p

p--1

(p- 1)2

P
0_+ :)

(lo -- 1)a

P
(p2 + 4p 4- i)

(p- I)4

P
(pS + llp2 + llp + 1)

(p- 1)s

P

(p -- 1)3

P

(p- 1) 4

p

(p--l)m+1

P

p -- C •

p

p + C c,

P

(p -- C,02

• (P - C_,)s

P
(p + C@

(p - C@3

p

(p - Cap

p

(p -- C@m+,

p

p - ejx
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Table 3 (continued)

Table of numerical operators

No. (an} n _ o F (p)

18 {sin xn} p sin x

19

2O

21

22

{COS Xn}

{cos= n}= {(- I),,)

{Can. sin xn}

{C.. cos zn}

z_ {sinh xn}

24 {cosh xn}

25 {C _,ncosh xn}

26 {C c,ncosh xn}

27

28

29

3O

31

32

1

1 - c,, {1 - Ca.}

1

1-C={1-C=(n-1)};n_l

1
{C,,, - C_,.}

Co,, -- C_,

{n} {i --C_m}

1 -- C= (i -- C=)_

sin xn
n! ]

pS--2pcosx+ 1

p (p - cos x)

p2--2pcosx+ 1

P

p+l

C_ p sin x

pZ _ 2pea COSX + Cz=

p (p -- C= cos x)

p2 _ 2p Ca cos x + C_=

p sinh x

p2_2pcoshx+ 1

p(p--coshx)

p2 _ 2p cosh x q- 1

Ca p sinh x

p= -- 2p C_ cosh x + C2=

p (p -- Ca, cosh x)

p2 _ 2p Ca cosh x + C2=

P

(9- c@(p- I)

(p - c.)(p - 1)

(p -- C_,)(p -- C_,,)

(p- Ca)(p - 1)2
1

P
e = e q

(q q- I) e q

33 e q cosx . cos (q sin x)

34 lcos xn_ e q cos x . sin (q sin x)
1 n! ]

35
sin x

arc tan
p -- cos x
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Carrying out the calculations with the assumption that • = 0.05 sec.,

or using the analytical method, we may confirm that the results obtai_ed

are sufficiently accurate. After computing a large number of points of

the function h(t), we can then draw its plot.

ANNOTATIONS

Deduction of the formula determining the transfer function of a feed-

back sampled-data system.

If the transfer function of an open sampled-data system at the

point "a" (Fig. 6) is denoted by the symbol K/(p, _), then we shall obtain
the relation

Uout (p, _) + _--_gt (p, _)" Vl (p). (a)

This equation is of course also correct for _ = 0, thus we have

1

Uout (p, O) = k_u g_ (p, O) Vl (p). (b)

Assume that the excitation U0(n, e), was applied at the output of the

system. Then, if the feedback is negative, we shall obtain

Uin (n, _) = Uo (n, e) -- Uout (n, _),

thus, also

Vin (p, _) = Uo (p, _) -- Uout (p, e) (c)

and at the moment of the appearance of pulses

V,n (p, O) = Uo (p, O) -- You t (p, 0). (d)

Let us further observe that U1 is related with Uwe only at the mo-

ments e = 0, therefore we have

V_ (p) ---- k u Uin (p, 0). (e)

Taking now into consideration in (b) the relations (d) and (e), we shall
obtain

Uout (P, 0) = El (p, 0) [Co (p, 0) -- Uout (P, 0)],

and hence

KI (p, 0)

Uou t (p, O) -- 1 --b KI (p, O) U° (p' 0).

Taking in turn into account the relation (b) we shall find

ku
Vl (P) = ].-+ g I (p, O) Uo (p, 0),

(f)
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hence after using (a) we shall finally obtain

Ki (P, _)

V°ut (P' e) ---- i -k KI (p, O) U0 (P, 0). (g)

Formula (g) will be called the equation of a feedback sampled-data

system, and the expression

Ki (P' e) (h)
Ks, i (p, t) -- 1 -k KI (p, O)

will be given the name of the transfer function or the characteristic

function of a feedback sampled-data system.
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THEORY AND DESIGN OF SAMPLED -- DATA CONTROL

SYSTEMS 1)

a65-36o Q.

This paper presents the foundations of the theory and the principles od de-

signing sampled-data control systems. The paper consists of three parts; Part I is

concerned with basic information concerning the mathematical method on which is

based the analysis of sampled-data systems; Part II covers the principles of the

theory of sampled-data systems containing no feedbacks; in Part III an outline is

given of the theory and principles of designing sampled-data control syst_ms_k _

INTRODUCTION

We may distinguish three principal stages in the development of the theory of

sampled-data control systems.

In the first stage, sampled-data control systems were investigated by the ana-

lytical-graphical method. That method consisted in analytical determination of

elementary waveforms corresponding to single rectangular pulses, and then in the

graphical summing up of such waveforms.

In the second stage, the classical method used for the investigation of saml_led-

-data control systems, applying the theory of differential equations. This method was

based on the statement that the control process in a sampled-data control system can

be determined by means of linear difference equations with constant coefficients.

In the third and last stage of investigating sampled-data control systems, the

operator method was applied, which makes use of the discrete or summation La-

place transformation [1], [2], [3], [4].

The last method, which was recently worked out and developed

by a Russian author, Y. Z. Tsypkin, yielded the foundations for a broad

development of the theory of sampled-data control systems. The main
advantage of this method lies in the fact that it makes possible to consid-

er a large class of sampled-data control systems on the hasis of the

same theoretical principles. Another advantage is that this method una-

bles us to use, in the theory of sampled-data systems, several notions

(such as, for example, time characteristic, frequency characteristic, opera-
tor transfer function, spectrum transfer function, etc.) which are well-

known from the theory of dynamical systems. In spite of such advan-

tages, Tsypkin's method has a serious and basic disadvantage -- namely, it
is based on the summation Laplace transformation, which is a special

1) Rozprawy Elektrotechniczne (Vol. III, No. 4. 1957, pp. 459--53{}).
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mathematical apparatus, not applied to other problems, and thus unknown

to a large group of engineers.

In should also be noted that the summation Laplace transformation
•imposes an essential restrictions as regards the class of functions to be

considered, and therefore limits the range of applications of the method.

For the reasons stated, to establish the theory of sampled-data control

systems on the method of the summation Laplafie transformation is, in the

opinion of the present author, not justified from the methodological point
of view.

The theory of sampled-data control systems presented in this paper

is based on the method of the integral Laplace transformation which is

in common use in the theory of dynamical systems. Moreover, care has

been taken to make the theory of sampled-data control system as similar

as possible to the theory of control systems with continuous action.

PART ONE

OPERATIONS ON STEP FUNCTIONS

1. THE NOTION OF A STEP FUNCTION

A step function will be called such a real function f(t) of the real

variable t, as is constant in each interval [nT,(n + 1) T], where n is an

integral number, and T is a constant greater than zero (Fig. 1). The

constant T is called the "parameter of the step function". The step func-
tion is usually denoted by the symbol Ff(t); however, this notation is

not convenient in practice. In this paper we shall denote this function in

a simpler manner, namely, by the symbol fit].

Let us assume that the values of the step function at the points of

discontinuities are its right-side limits at these points -- that is

[nT] = lim I [nT + _] = f [nT + 0]; e_ O. (1)
s'-)'O

Notice that by means of a simple substitution

t (2)

the step function can be reduced to a function which is constant in unit

intervals [n, n + 1], thus to a step function f_] whose parameter is the
number T = 1.

For simplicity, we shall confine ourselves in what follows to inves-

tigating step functions f[t I with a unit parameter. This restriction obviously
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entails no limitations as regards the generality of considerations, since

after performing any operations on the functions f_], we may always

transpose the result -- by substituting (2) -- on the functions f[t-] with

an arbitrary parameter T. The step function f[t-] can always be uniquely"

determined by means of the sequence f(n) formed from its values. Notice

that the four arithmetical operations performed on the functions f[t-]

correspond to (are isomorphic with) four analogous operations performed

on the sequences f(n). This property holds also for any difference opera-
tions (displacement, summing, difference operation). Owing to this pro-

perty, the step function will be simply denoted by the symbol f(n)

instead of f[t-].

I

i I

__1 I

-2T -T

,f (t)

I
I

I I

I I

t I

J

2T 8l" 7T 8T

Fig. 1. Step function

2. OPERATIONS OF DISPLACEMENT, DIFFERENCE AND SUMMING

We define certain operations on the set of step functions f[_ --

namely, displacement, difference and summing.

The displacement is an operation setting into correspondence the step

function f[t-] with the function f[t-+ k], where k is any intergral number.

If, then, the displacement operation is denoted by the symbol Tkf[{], then
we shall obtain the formula

T k f [t-]_ f It-÷ k]. (3)

The difference operation is that which sets into correspondence the

function f[t-] with the function in the form of the difference fit + 1] -- f[t].

This operation is usually denoted by the symbol Af[t]; using this denota-

tion we shall express the difference operation by the formula

Af [t-]----fit + 1] -- f It]. (4)
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The resulto2 the aboveoperation-- that is the function Af[t] is called

the "difference of the first order" of the function f[t].

The difference operation may be performed several times -- for

example two or three times. The result of the k-fold difference operation

is denoted by the symbol Akf[t-], and is called the ,,difference of the k-th

order" of the function f[_]. This operation is determined by the recurrent
formula

Ak f [_] _ _k-1 f [_ + 1] -- Ak-' f it]. (5)

Thus, for instance, the difference of the second order of the function

f[t-] is the following step function Aff[t]:

Ae][t] = Af[t + 1] -- AfEt-] = f [{+ 2] -- 2f[t÷ 1] + ][_] (6)

We may easily observe that in accordance with Definition (5), the

difference Ak][t] can always be represented in the form of a linear com-

bination of the operations Tkf_-]. Namely, by means of induction we can

deduce the followng formula
k

_k f[_] = 2(_ 1),
k! Tk_,f[_], (7)

v! (k --v)!
r=0

where, in view of Formula (3)

Tk-_f[t] ----fit + k--v].

Accordingly the difference does not introduce any new analytical
consequences as regards the displacement operation already presented,

since finally it can always be reduced to the displacement operation.

The operation of summing sets into correspondence the step func-

tion f[t-] with the function _ f(m), where the symbol It-] denotes the
m=0

function "entire t". If, for instance, the summing operation is denoted by

the symbol o_[t-], then we obtain the formula

of [i] = _, f (m). (8)
m=0

Summing in the domain of step function'plays a role similar to that

of integration in the analysis of continuous functions, and the difference

operation -- the role similar to differentiation.

Note that the operations of displacement, difference and summing

described above are additive and homogeneous -- that is, they satisfy the

following relations

105



q5 {I1[t] + h [tll ----_slt [t] + _i2 [t], (9)
{CI [t]} = C@I [tl,

where _ is the symbol of operation, and C is an arbitrary constant.

The relation between the step function f[_ and its differences AfD-],"

A2;f[t].... Ak;f[t] is called the difference equation. Of particular impor-

tance to applications is the linear difference equation with constant coef-
ficients. This equation has the following form

ao A k_ It] + a, Ak-1 f It] _- . .. + ak _ It-]-----_0It], (10a)

where a0, al,.., ak are complex numbers and _[t-] is a step function given

in advance. Using the relations (7) we can write every difference equation
also in the form presented below, which is convenient in applications

5o][-(+ k] + b_[t+ k -- iI +... + bkS[t] = _o[t--] (10hi

The classical method of solving difference equations is very close to

the classical method of solving differential equations. To get acquainted
with these methods, the reader is referred to the literature -- for exam-

ple, to the papers [1] and [21.

The terminology concerning difference equations is also very close to

that used in the problems of differential equations. Thus, for instance,

the Eq. (10b) in which g)[t] =_ 0, b0 =/= 0 and bk =fi 0 is called a ,,nonhomo-

geneous equation of the k-th order". In the case in which _o[t-] = 0, this

equation will be called a homogeneous equation.

It is worth noting that the order of a difference equation is not

always equal to the order of the largest difference Akf[t] if the equation

is written in the form of (10a), whereas the form of (10b) does not entail
this inconvenience.

The problems of operations performed on step functions, and in

particular the problem of difference equations, are dealt with in a special
branch of mathematics which is called the "difference calculus".

Below are given simple examples illustrating the manner of determin-
ing differences and sums of step functions.

Example 1. Let us calculate the differences of the step function

l(n) = n

By virtue of Formula (4), the difference of the first order of the

function ](n) = n is equal to unity, since we have

d](n)_-nn ul-n--=l

The differences of higher orders are equal to zero

/t' 1(n) = 4 3_(n) = ... = 0
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Example 2. Let us calculate the difference of the step function

f (n) = e"

For the difference of the first order we obtain the formula

LJS(n)= en+i - e n = e n(e- l)

and for the differences of higher orders

Ak f(n) = (e -- 1)ke n.

Example 3. Let us calculate the sum of the step function

)_(n) = a".

We shall obtain

n

a n-1 -- 1_f(n)= am= a--1

rn_0

3. LAPLACE TRANSFORMATION OF STEP FUNCTIONS

As we know, the Laplace transformation is called the following

equation

F(s) = _](t)e-St dt (11)
0

which sets into correspondence the function ](t) of the real variable t with

the complex function F(s) of the complex variable s. We assume that

the function f(t) ensures an absolute convergence of the improper inte-

gral (11) in the semispace )?e s _ c, where c is a number chosen for f(t).

We then assume the existence of the limit

T

lim (l)¢(t)le-_'dt (12)
T--_ "1

0

where _ _ c.

The Laplace transformation is abbreviated by the symbol

F (s) = _ {f (t)} (13)

Let us assume that we have a given step function f[t-] determined

for t_0, and calculate its Laplace transformation. According to (11)

we have
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ou _ n+l

f,E-- 2fF (s) - t] e-_ a_ = f [t] e-_ at

0 n=O n n=O

oo n+l

= n) e -s =

oo

n=0

and after introducing the denotation

1 (i -- e-s) (14)

oo

f (s) _- ./J {f _-]} = _l_ f (n) e-s" (15)

n=0

The series (15) for _, s > c is evidently absolutely convergent for

every function f[T] satisfying the condition (12). The number c will be

called the ,,abscissa of convergence" of the series (15).

J2 f l

It may be noted that the quotient |f[t]Jis dependent on the complex

variable s only through the exponential functions e -8", since we have

= ? {f(t)} = _-_](n)e -s" (16)

of:}

F(s)

n=0

Thus if we introduce a new variable z

z = e '_ (17)

and moreover, if we denote

F* (z) = - (18)

then the function F*(z) will be the sum of the following series

F* (z) = _ f(n)z-" (19)
n=O

It is worth while to add that Formula (19) determining the cor-

respondence of the step function f(n) with the function F*(z) may formal-

ly be considered as a new functional transformation. Formula (16) may
also be taken as the definition of a certain transformation determined on

the set of step functions. Y. Z. Tsypkin calls this transformation a

"discrete Laplace transformation" and denotes it by the symbol D(f(n))[1].

Using Formula (16), we can determine the Laplace transformation

of step functions without the necessity of calculating the integral (11).
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Below are presented simple examples of calculating the functions

F*.(z) and F(s) for certain step functions.

Example 1. Let f[t] = l(t) be a given function; by virtue of (19), we

have for Izl _ 1:

_o

F* (z) = _ z-" -- 1 _ zl_z -1 z--1

n=O

and, in view of (16) and (17)

e s

F(s)----,f2{1}--e _-ln; _)?es>0

Example 2. Let f_] = e _n be a given step function. We have

F*(z)=_e _nz -n= z .z-e ' Izl>Ie l

Hence

e $

F(s)-:_k){e_"} - e__e _ _l; _s)a.

4. CERTAIN PROPERTIES OF LAPLACE TRANSFORMATION

We shall now provide proofs for more important properties of the

Laplace transformation concerning step functions. The knowledge of

these properties will be necessary in using the method of the Laplace

transformation in the problems of the theory of sampled-data systems.

Property 1. If f[t-] is a transformable step function, then

k-I

.f2 {][t_- k]} = eskJ? If[t]} -- _le_k_f(n)e -_" (20)
n==0

a natural number and V -----1(1 -- e-_).where k is

Proof: According to (16), we have

-- _-_f(n _- k)e -_"k]}

n=0

If, then, we introduce a new variable of summing n_ = n ÷ k, we shall
obtain
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co _ k-1

k]}

nl=k nl=O nl=O

Since the result of summing does not depend on the manner of _

denoting the variable, then

k-1

_L'{J [t + k] I : e"k _' {f [t-I] -- _ e"k X J (n) e-"n
/1=0

By denoting e_ : z, we may write Formula (20) in the form

k-1

}2 {J[t'_- k]} -_ zkol2 {J[t]} -- _lzkX1(n)z-n (20a)
n=0

In a particular case in which

f(O) ---- ](1) --... = f(k -- i) ----0

which means that the step function f[t:]is identically equal to zero in

the interval 0 _ t< k, we shall obtain

{_[t-+ k]} ----zkoC {J [t]} (21)

Property 2. If J[t] is a trasformable step function, then

k-1

A? {Ak/(t-l} = (z -- 1) k ,/2 {f [}-]} -- _z_AnJ[0] (z -- 1) k-'-" (22)
n=0

a natural number, z -_ e s, and _ ----1 (1 -- e-_).where k is

Proof. Let us first assume that k----1. Then, in accordance with the

definition of the difference A][t] we have

.c = oc + 1]}-c

and on account of Formula (20a)

2 {Af[t]} -----zZ {f_]} -- ,]zf [0] -- 2 {J[t]} ----(z -- 1),/J {1(t-l} -- _zf[0] (22a)

Assuming in turn that k ---- 2 and taking into consideration that

,t 2J [t] = 41 [t + 1] --/If [t]

after performing simple calculations we shall obtain

.C {A21[t]} = (z -- 1) 2 L' {f [t]} -- _z(z -- 1)f[0] -- ,/zzl/[0l (225)

We have thus proved that Formula (22) holds for the case in which

k = 1 and k ---- 2. The correctness of Formula (22) may then be proved
by induction.
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Property 3. If fz[t] and f2[t] are two transformable step functions, then

m=0

where _ = 1 (1 -- e-s).

Proof. By virtue of Formula (16) we have

(23)

_ {]1 It]} _ {]2[t]}_ _y 2]_(n)z_n2]_(n)z_ n

n=O n=O

where z = es.

Thus, if we calculate the product of the series according to Cauchy's
formula

22
n=O n=O n=O m=O

we shall obtain

_ X ]'(n)z-nX ]2(n)z-n = _]X z-n X ]'(m) fe(n -- m) =
n=O n-_} n=O m=O

oo oo

----,,X z-nX S,(,,,) ,,,]
n=O rn=O

and on account of Formula (16)

m=0

Property 4. If f[t] is a transformable step function, and
then

F (s) = 2 {f[_]}

c {nkf [}]}= (_ 1)k_ h-_

= 1 (1- e -s) and k is a natural number.where

Proof. In fact, since

F (s) X--_ = ] (n) e -s"
n---0

(24)
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then

_sk : (-- n)k f(n)e -s" = (-- 1)k 1_ _2{nk f[t]}

n=O

and hence follows immediately the relation (24). Expressing the relation

(24) by means of the function F*(e s) determined by the dependence (19),

we shall obtain a simpler formula, namely

{nk f[t]} -- (-- 1)k _ f*(e ._) (24a)
7]

Property 5. If f[t-] is a transformable step function and F(s)= J2 !:f[t],

then

1

where _ = s (1 -- e-S).

Proof. in fact, since

then

oo

F (s)lim -- f(n)
s-_O

n=O

oo

Fs _ f(-- n) e -sn

n=0

(25)

oo

lim _, f(n)e -_ = 2 f(n).
S--_O

n=O n=O

The relation (25) may also be expressed by means of the function

F*(e s) determined by Formula (19). We shali then obtain

lim F* (es) = _ f (n)
s-_0

n=0

Note that the series standing on the right-hand side of Equations

(25) and (25a) determines the field comprised between the plot of the

step function and the abscissa axis. This series is evidently convergent

only in the case in which this field is limited; this takes place when the

abscissa of convergence c in the series (16) is a negative number.

5. RELATIONS BETWEEN THE IMAGE OF STEP FUNCTIONS
AND THE FOURIER SERIES

Let us assume that the abscissa of convergence c of the step func-

tion f[t'] is a negative number. This means that the function f[t] asymp-
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totlically tendsto zerowith increasein the variablet -- that is, it satis-

fie's the condition

lim f [_ = 0
t->oo

In this ease, in Formula (19) determining the function

F(s) L' {J [?]}
F* (e s) ......

we may assume that s ---- jco. The function F*(e j_) will then be the sum

of the following series

oo oo oo

F*(ei_o) _.= _ f(n)e-io_n = _ f(n)coscon -- j _ ](n)sincon. (26)
n=O n=O n=O

It is worth noting that the right-hand side of Formula (26) is simply

a Fourier series with the real coefficients f(n). Hence follow the interest-

ing conclusions stated below.

First of all, it follows from Formula (26) that the function F* (eJ ")

is a periodic function of the variable co. Moreover, we immediately state

that the values f(n) of the step function, as coefficients of the Fourier

series, are related with the function F*(e j_) by means of the formula

1/f(n) = _ F*(e/°J)e i_'_"dco (27)

The expression F*(eJ_), as a complex function, can of course be written

in the form of the real and the imaginary component. If, then, we

denote the real component of the function F*(e j_) by A*(co), and the

imaginary component by jB*(co), then

F* (e j_) = A* (co) + jB* (co)

and by virtue of (26)

oo

A* (co) = _ f(n) cos ,,,,,

,-0 (28)

B* ((o) = -- _ f (n) sin oyn.
n=0

Let us now consider Formula (27). Substituting in this formula

e _°n ---- cos con + j sin con and F*(e j_°) = A*(co) + jB*(co) we shall obtain

1 2 .

)¢(n) -----_- j [A (co) cos con -- B* ((_) sin con] dco +
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+ J _-= / [A* (w) sin con + B* (co) cos con] dco.

Since A*, as a function cos co, is an even function, and B*, as a function co,-

is an odd function, then the integrand in the first integral is an even

function of co, while in the second integral -- an odd function of co. The

value of the second integral is then equal to zero, and hence

1/I (n) = _- [A* (co cos con -- B* (co) sin con] dco =

= 1 _ [A* (co) cos con -- B* (co) sin con] dco. (29)
3I J

0

If f(n)----0 for n _ 0, Formula (29) is further simplified, and we
obtain

0

] (n) = 2 f .. sin condco
-- -- °

7_

0

In fact, substituting -- n for n in Formula (29), we shall obtain

_ f [A'(co, coscon _ B'(co, sincon]dco = O, (31,

0

and hence, after taking into consideration (31) in (29), we arrive immedi-

ately at Formula (30).

(30)

PART II

OUTLINE OF THE THEORY OF SAMPLED-DATA SYSTEMS

1. NOTION OF A SAMPLED-DATA SYSTEM

The sampled-data system is a system consisting of two elements

connected in series namely, of what is called a sampler, and a linear

dynamical system (Fig. 2).
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The task of the sampler is to transform the input signal xl(t) usually

representing a continuous function into the signal xl(n) in the form of

rectangular pulses. We assume that the pulses generated by the sampler
at the moment of their appearance are proportional to the function of

the input signal xl(t). In other words, we assume that the heights of the

pulses xl(n) are modulated by the function xl(t). Moreover, we assume

that the period of the occurrence of pulses and the width of pulses are

constant quantities which do not change in time (Fig. 3). The sampler

performing the transformation of the signal will then be characterized

by three independent parameters namely, the amplification k, the period
of generated pulses T, and the width of pulses rT; r _ 1. These three

parameters fully characterize the proporties of a sampler.

o x,(t) _ xdt)o

5Qmpler Linear,_{lstem

Fig. 2. Sampled-data system

],
L'o a Eo._V

f

X2

I
x,,dn)

Fig. 4. Operation principle of a meehan-

"_'11 "'1_ ical sampler of the first type. (1) bar,kx'[°)l_]'" ""'_-_ -'_ (2) indicating needle of the galvano-
T ZT 3T "-_" 5T :_ meter, (3) winding of the resistor, (4)

Fig. 3. Pulse signal generated by a batteries of voltage E, (5) driving
sampler mechanism

The construction of samplers may vary considerably as to kind. The

sampler may be, for instance, a key, an electronic relay, etc. In control

systems, an electromechanical sampler is usually applied, constructed
as shown at Fig. 4. The action of such a sampler is as follows. The bar 1

is set into a periodic vibrating motion (up and down) by means of a

special mechanism 5: owing to this motion, in presses, at certain deter-
mined intervals of time, the indicating needle 2, of the galvanometer to

the winding of the resistor 3. Two batteries of voltage E are applied
to the terminals of this resistor. The input signal x_(t) of the sampler

is the deflection of the indicating needle 2 from the central point of the

resistor 3. The output signal is the voltage x_(n) measured at the termi-

nals, a and b. If the resistor is wound uniformly, the heights of the signal
pulses, x_(n) are proportional to the deflection of the indicating needle 2,

from the central point of the resistor, and thus the heights of pulses are

proportional to the signal xl(t).
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A sampler so constructed is evidently simultaneously an amplifier.

Since the energy of the output signal x2(n) may considerably exceed the

energy of the input signal xl(n).

Every dynamical system under the influence of a signal in the form

of a sequence of pulses, even though it possesses no sampler, may of course

also be reckoned in the category of sampled-data systems and considered

in terms of the theory presented in this paper, for it is always possible

to treat a signal in the form of pulses as an output signal of a certain

fictitious sampler. The input signal of such a sampler may have an ar-

bitrary shape as long as at moments of the occurrence of pulses the signal

is proportional to the height of pulses.

It is worth noting that sampled-data systems have various appli-

cations beyond control engineering. They are encountered, for instance,

in radio engineering, radiolocation and television.

2. EQUATIONS OF A SAMPLED-DATA SYSTEM

The linear element of a sampled-data system may be any linear

dynamical system. In a particular case, the linear element may be an

electrical four-pole, a mechanical system, an electromechanical system,

etc. In the present discussion, we shall not be concerned with the es-

sential properties and the structure of the linear element, but shall in-

vestigate its properties in terms of well-known general laws governing

linear dynamical systems. Moreover, we shall confine ourselves to inves-

tigating systems whose dynamical properties can be described by means

of ordinary differential equations -- that is, to systems constructed of

lumped elements. We knew from the theory of dynamical systems, that

the transmission properties -- that is, the "capabilities of transmitting

signals" of a dynamical system -- can uniquely be determined from the

knowledge of a certain rational function

P(s) (32)
K (s) -- Q (s)

which is the ratio of the Laplace transformations of the output signal to

the input signal. This function is called the transfer function of the

system.

The transfer function K(s) of a system can be determined in a simple

manner by well-known methods; for example, it may be calculated from

the differential equations of the system by means of the substitution of

dk
the complex variable s a for the symbol of differentiation d-_.It can be
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proved that, for every real dynamical system, the degree of the polyno-
mihl P(s) cannot exceed the degree of the polynomial Q(s) of the transfer

function K(s).

't........H
m J ;m+_"

I I
I

t l(t-m) i '

I I

I I
f

t

P

-l{f-m-_) *
-f ..........

Fig. 5. Representation of a rectangular

pulse by means of the difference of

two displaced unit-step functions

The transmission properties of a dynamical system can also be de-

termined by means of the so-called unit-step response of the system that

is, by means of the function of the output sygnal actuated by the input

excitation in the form of a unit-step function. The unit-step response
is usually denoted by the symbol h(t). It is related to the transfer func-

tion K(s) of the system in the following formula

c+joo

h (t) = f2-1 -- 2_j s
c-j_o

If we know the function h(t), and thus also the function h(t) = h ,

then we can easily determine the response of the system to the excita-

tion in the form of a rectangular pulse. Namely, toking into consideration
that a rectangular pulse with a unit height and with duration from

71 =m to t-2 = m + _,, can be considered as the difference of two dis-

placed unit-step functions (Fig. 5), we shall easily find that the responses of

the system to such a pulse will be equal to

h(t---m), for m_t<m-9?; (34)
hy (t-- m) ----h (t-- m) -- h (t-- m -- ?), for t_ m -9 ?
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The first expression determines the response of the system to a rec-

tangular pulse during the duration of the pulse, and the second expres-

sion m beyond the duration of the pulse.

Let us now assume that on the system there acts a signal in the

form of a sequence of rectangular pulses with identical widths and with"

heights changing according to the law kxl(m) (Fig. 6). The output signal

kxdm)

x,(m)

t 2 3 4 5 6 7 8 9 m _

Fig. 6. Waveform at the input of a linear element
of a sampled-data system

of the system will then be the sum of all the elementary responses of

the system to each pulse having the height kxl(m) and the width 7.

Accordingly, considering the time interval n _< t" _ n + 1, we shall obtain

n-1

=_(5 = k _, x, (_,)_,,(_- =) + kx, (n)h (_- n)
nr-_O

for n _-{ < n + 7

and
n

=_(_)= k _ =1(m)h, (_-- m)
?n=(}

(35)

for n + 7 <_-t< n + l.

The function of the output signal xf(t) is then determined by two

independent analytical formulae, the firstof which (35) defines the signal

x_(t) in the time intervals corresponding to the duration periods of the

exciting pulses.

It should be emphasized that the existence of two independent for-

mulae determining the output signal xf(_ is a feature characteristic of

every sampled-data system. This fact entails -- as we shall see later --

the necessity of introducing also two independent frequency charakteris-

ticsof a sampled-data system.

Formulae (35) can also be written in a somewhat different form.

Namely, introducing the denotation
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__ t At
T --n-_-----n-Fe

we shall obtain

rl--1

x2 (n -P _) --- k _ x 1 (m) h_ (n ÷ _ -- m) -b kxl (n) h (_)

for n_n fl-e<n-P7

and (36)

/]

x2 (n fi- s) -----k _ xl (m) h r (n -_ e - m)
m=0

for n-_7_n_e_n÷ 1.

The expressions (36) thus obtained determine -- for a given value

of _ -- the relations between the values x2(t-) at moments when they are

equi-distant from one another: t----- e, t----- 1 _- e, t-_- 2 -_ _.... The val-

ues of the function x2(t) corresponding to the given walue of e can, then, be

replaced by the step function x2(n, e) being depedent on the parameter _.

Taking into consideration that h r (t-) -_ 0 for t-_ 0 -- that is, for n _ m

-- we may extend the limits of summing from n to oo.

Accordingly, Formuale (36) can be written as

_o

xe (n, _) ----k _'xl (m) h r (n -- m, e) 0 _ e < 7,
rr_0

X 2 (n, e) _--- k _ X 1 (TD,) h r (n -- m, e) ? < e < 1,

/n=0

where the comma by the sign of the sum in the first of the formulae

(37) indicates that for n ---- m the expression h_ (n -- m, e) ---- hr (O, _)

should be replaced by h (O, e).

(37)

3. PULSE TRANSFER FUNCTIONS

Transmission properties of a linear system can always be determined

by means of the following function K(s)

(t)}
K (s) = -:f_{ xl(t) }_ (38)

where x2 and xl are the input and output signals of the linear system,

respectively, and L denotes the integral Laplace transformation. The

question now arises as to whether it would be possible to determine,
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similarly by meansof a certain function, the capability for transmitting
signalsby a sampled-datalinear system.The answeris positive.

In order to explain this problem, it should first be noted that any
continuousfunction of a real variable t can uniquely be determined by

means of a set of step functions dependent on a real parameter. Evi-

dently, if we take into consideration, for example, the function f(t),

t
where t =_is a real variable, then the set of step functions J[t, e] de-

pendent on the parameter C _ [0,1] and formed from the function f(t),

uniquely determines the function f(t-). This may be expressed as

f(t-) _ S [t, _] (39)

Using the representation of the continuous function by means of

a set of step functions, we may define the pulse-transfer function as

follows

K* (es, s) -- L' {x2 [_, e]} . 0 _ e < 1 (40)
{x,[7, '

where xt[t, e] is a step function dependent on the real parameter s which

determines the output signal x_(t) of the sampled-data system; xs[t] is

a step function formed from the function xl(t) of the input signal (Fig. 5).

The function K*(e s, _) has a simple physical interpretation. It can

be shown that K*(e s, s) is the Laplace transformation of the function k

1 (1 -- e-S), wherehr[t, e] divided by the transformation unit _] =s

h_ It, _] is the time response of the linear system to the exciting rectangu-

lar pulse width F T and height equal to unity, and k is the amplification

of the sampler. Thus we obtain

K* (e _, _) = C {kh r _, _]} (41)

In fact, according to (40) we may write

Hence, as the result of the step function convolution, we obtain

co

.,_>/5'x,Emlkh ,E -: '-'Ix t , ll
m:O

and

x.> [7, _'] = _ x, [m] kh r It -- m, _] (42)
m=0
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or

oo

= k xl (m) - m)
m=0

However, the relation (42) determines the output signal of the system

in the case in which h(t) is the response to the rectangular pulse with

height 1 and width T (by virtue of Formulae 35) (Fig. 6). Accordingly, the

expression h(t), is in fact the time response of the system to excitation in

the form of the rectangular pulse determined above.

Let us take into consideration a formula determining the Laplace

transformation of the step function

oo

_ {)_(t)} = _ Z f (n) e -"_ (43)
n=0

where

1
,l = s (i - e-9

In terms of the above formula, the relation (41) may be written as

an infinite sum of exponential functions. Let K_ (e _, e) denote the func-

tion K*(e s, e) in the interval o _ e _ 7 and KI*I (e s, _) denote this function

in the interval 7 _ e _ I. Thus we obtain
oo

K_ (e_, _) = kh [0, e] + k Z kr [n, _] e-"_; 0 _ _ < 7

n=l (44)
oo

n=0

Formulae (44), which determine the function K_ and KI*I differ from

each other by the component h[0, e], which is the time response to the

excitation of the unit step function. This is so, because during the first

moments -- that is, in the interval 0 _ e _ 7, in which the first rectan-

gular pulse is not yet finished -- the system reacts in such a manner as

it would react if the unit step function were an excitation, not the pulse.

Formulae (44) may be used for practical calculations of the pulse-

-transfer functions/4:_ and KI*I. The function h_[n, e] = h(t) = h(T ),
which

occurs in the formulae (44), can be evaluated from the transfer function

of the system

(' {x2 (t)} P (s)
g(s)= _' _,(t)i = Q(s)

When the function hz[n, _] is found, we may calculate K_ and KI*I in

a simple manner by summing Formulae (44).
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The methodof calculatingthe pulse-transferfunctionsK_ and K}*I

for the case of systems with lumped elements, reduces to finding the tifiqe

response -- for example, in terms of the formula

l

h (t) P (o) _ P (s_) t (45)= QM +

and to determining the function h(T): h(n --}-e) and h_ (n, e) ----

----h(n _-e)- h(n q-e)- 7, and finally to calculating the sums of the

series (44).

Similarly, for any realizable transfer function K(s), we can calculate

the corresponding pulse-transfer function K_ and K_. The results of cal-

culations fo.r these functions are appended in Table II in the Annex. In

this Table, the function K* is also given, corresponding to the case of
e

very narrow pulses -- that is, if y _ 1.

Further, we shall prove that the function K* is also a pulse-transfer

function of the system with a modulation of the width of pulses -- that

is, for sampled-data systems of a different type. However, the amplifi-

cation coefficient of the sampler should in this case be substituted for

the width coefficient _ of pulses.

This fact is of great practical significance, since it makes it possible

to apply the theory presented in this paper to sampled-data control sys-

tems with a variable width of pulses.

Of course it should be possible to confine the pulse-transfer function

to the case of very narrow pulses y _ 1, since we can obtain every pulse

which has a different form from the Dirac 6(t) pulse, by acting on the

input of the proper forming element by means of the function l(t). Thus

the considerations could be limited merely to a sequence of Dirac pulses,

as has been done by several authors. However, the differentiation be-

tween the pulse-transfer functions K_ and Ki*I simplifies in many cases

the analysis of systems.

Taking into consideration Formula (40), the pulse-transfer function

K* entirely determines the capability of the system of transmitting pulse

signals, since -- knowing K*(e _, e) and Xl[t] -- we can always calculate

the waveform of the signal X2_, _] "_ X2(_ from the Formula

L _ {X2 [t, e]] ---- K*(e s, e)f2 {X, [t]} (46)

The Laplace transform pairs of unit-step functions, which are append-

ed in Table I, are helpful in the calculations.

Introducing the notation

z _- e _ (47)
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wemaywrite the functionK(e s, _) in the form

• K* (z, _) (48)

4. CHARACTERISTICS OF SAMPLED-DATA SYSTEMS

4.1. Time characteristic

The properties of sampled-data systems (similarly to those continuous

of dynamical systems) may be expressed by means of time characteristic

or frequency characteristic.

The time characteristic of a sampled-data system is determined by

the response of the sampled-data system to a unit step excitation. The

frequency characteristic of a sampled-data system is determined by the

steady-state component of the response of the system to an excitation by

means of a sinusoidal function.

The first of the above characteristics is treated as a time function,

and the second -- as a frequency function.

The time characteristic will be denoted by the symbol b[n, s]. This

characteristic may be determined directly from the equations of a sam-

pied-data system

J2 {x2 [n, _]} = K_ (z, _)_ {x 1 [n]} (46)

with the assumption that

z {x, [n]}= 2 {1[n]} -
z--1 _

thus we have

z

{b [n, e]} ---- K_(z, _) _--1 _

We shall prove that the time characteristic b[n, e] determines uniq-

uely the transmission properties of a sampled-data system -- that is,

from the knowledge of the characteristic b[n, e] is always possible to de-

termine the output signal Xe[n, _] in the case of the excitation xl[n].

Let us assume that the input signal of a sampled-data system is the

function xl(t). Then at the output of the sampler we shall obtain a signal

in the form of a sequence of rectangular pulses. The responses of the

system to the particular pulses are defined by the following formulae

xl [0] [b [n, e] -- b [n -- 1, e]] ---- x_ [0] Ab [n - 1, e],

xl [1] Ab [n -- 2, _],

x, [2] Ab [n -- 3, e],

xl [n] [b [0, e] -- 0] = xl In] b [0, e]
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Summingup these formulae, we shall obtain the output signal x2[n, s]

n •

x2 [n, s] ---- xl [n] b [0, s] + X xl [m -- 1] _b In -- m, _] (47)
m=l

Formula (47) is analogous to a formula well-known in operator cal-

culus -- namely

t

x2 (t) ----xl it) h (0) ÷ f xl (_) h' (t -- _) dr (48)
0

which determines the output signal x2(t) of a dynamical system in terms

of a given unit-step response h(t).

After simple transformations, Formula (47) may also be written in

the equivalent form

n

x2 In, _] ---- x, [0] b In, e] + X zJx, [m -- 1] b [n -- m, _] (49)
m=l

4.2. Frequency characteristic

Let _ be the symbol denoting what is called the "dimensionless

angular frequency"

----coT (50)

where T isthe period of the occurrence of rectangular pulses.

The frequency characteristicof a sampled-data system will be called

the following function M(j_, _)

M* (j_, _') = f'-)c { xl{x, [_[t]}-_] } s=j_,_ (51)

In view of this definition and Formula (41), we arrive at

M* (j_, _) = K_ (e1"', e) (52)

The frequency characteristic of a sampled-data system is then ob-
stained from the pulse-transfer function K_ (e, e) of the system by substi-

tuting for the complex variable s the variable j_J = jcoT.

We shall now prove that the frequency characteristic M(j(o, _) of

a stable sampled-data system is equal to the ratio of the steady-state

component x2_,[n, s], of the response of the system to a harmonic excita-

tion, to the input signal x_[n], and thus the following equality is satisfied

M* (j_, _) : X2steady[n, _] (53)
x, [n]

where

x, In] = el_,
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Let usnextconsidertheequation
{x_[n,e]} = g_ (e _, e) _ [ei_.} (54)

determining the response of a sampled-data system to a harmonic exci-

• tation.

Taking into consideration in Equation (54)

e s

C {e j_"} = e_-__el_ _ (55)

we shall obtain

e s Pr (e _, _) e _
.L) {x2 [n,_]} = K_ (eS, e) e"_ _ ej _ _] -- -Q, (e_ • es _ ej _ _] (56)

where

K_ (e_, e) = P_ (e_' s)
Q*(e s)

and the functions P_ (e s, e) and Q*(e s) are polynomials of e s.

Expanding the rational function standing at the right-hand side of

Equation (56) into simple fractions, we shall obtain in the case of single

poles

l

eS--el_'es 2 es= _ (57)
_k_{x.,.[n,e]}---- A0(e) _÷ /L(e) e_ e_

v=l

where e_v are the zeroes of the polynomial Q*(eS), and l is the degree of

the polynomial Q*(e_).

Taking now into account the following obvious equality

we shall arrive at

/_:-1 _ ---- e _" (58)

!

xe [n, e] = A0 (e) e i_" + 2 A_ (_) e _" (59)
v=l

If the sampled-data system is a stable system (which is always the

case when the linear element of the system is stable), then all the num-

bers s_ -- as the poles of the transfer K(s) of the linear element -- will

have negative real parts

_o s_ < 0 (60)

Hence it follows that the term appearing ta the right-hand side of Formula

(59) represents a "decaying" function -- thas is, a function satisfying the

condition
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!

lim _. Av (e) e s'n ---- 0 (_1)
n--_cQ

In the case in which the pulse transfer function

g_ -_ (e s, e) -----P_ (es' e)
Q* (e_)

has multiple poles, then the second term of Formula (59) contains factors

of the form

n_(n--!):.. (n--/_ + 1) eS_(,__
/L !

which for c_e s_ _ 0 evidently also represent decaying functions. Thus

the steady-state component of the output signal x_.[n, e] -- independently

of whether the pulse-transfer function Ki(e s, e) has single or multiple

poles -- is the function A0(e) elan

x_u_t [n, e] -----A 0 (_) ej_ (62)

A0(e), as the coefficient of expanding a rational function with a single

pole, is calculated as follows

g_ (e s, e)
A 0 (e) ----lim _e _ • (e_ -- e j°_) = K_ (e1%e) -= M* (j_, s) (63)

s-+i_, -- eJ_

Since the input signal is the waveform represented by the function

xl [n] -- eJ_"

then from Formulae (62) and (63) follows relation (53)

M* 0_, _) = x_ _fe_ [n, _]
z_ In]

where xz[n] ---- eJa".

Giving the expression (53) a physical interpretation, we may consider

that the frequency characteristic M(j_, e) determines the capability of

the system for transmitting the "amplitude" and "phase" of a sinusoidal

signal. In fact, in the case of applying at the output the excitation

xl [n] = _ eJ_"

we shall obtain a signal in the form of a sequence of rectangular pulses

behind the sampler. These pulses will be distorted as a result of passing

through the system, and we shall obtain at the ouput of the system the

periodical waveform x=[n, e] with the frequency of the exciting signal

xj[n] = _h_, e j_", which will, in general, be a continuous function. Estab-

lishing the values of the parameter e, thus assuming, for example e = e0,
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we shall obtain -- as a steady-state component of the signal x2[n, _] --

the function X2ust[n, eo], constituting the sinusoidal sequence

x.,ust [n, _o] = M_ (_o) sin) [con + q_* (e0)]

.with the amplitude M_ (*o) and the phase 9"(_0).

Each value of the parameter , corresponds then (in a steady state)

to a certain sequence in the form of a sinusoid, which is characterized

by the amplitude M_ (_) and the phase 9"(_). The frequency characteristic

M*(j_, ,) is precisely the one which determines these amplitudes and

phases which are evidently the frequency functions _ of the exciting

signal xl[n].

The frequency characteristic

M* (j_, ,) = KY (eia, e)

as a function of e j_, is a periodic function of frequency -- that is,

M* [j (_ + 2k_), e] = M* (j_, e); k ---- 0, + 1, _ 2,.., (64)

This means that for two arbitrary frequencies _1 and _2 differing by

the quantity 2ak (where k is an integral number), the frequency charac-

teristic of a sampled-data system has the same value. Hence it follows

that in order fully ot determine the frequency charakteristic of a sam-

pied-data system, it is sufficient to know its plot in the interval having

the length 2_ -- that is, for instance in the interval --a _ _ < a.

A peculiarity of the frequency characteristic of a sampled-data sys-

tem is its dependence on the parameter ,. Different values of, correspond

in general to different characteristics.

As a complex function, the characteristic M*(j_, ,) may of course

be expressed in the form of the sum of the real and the imaginary com-

ponents

M* (j_, e) = A* (_, _) + jB* (_, _) (65)

or in the exponential form

_* (j_,s)-- IM*(j_,e) Iei** (_' *) (66)

The function ]M*(j_, ,)[ is called the amplitude characteristic, and

the function 9"(_, ,) -- the phase characteristic of a sampled-data system.

From Formulae (65) and (66) follow the obvious relations

]M*g_,,_)]= I/_ *_(_,_)+ B*_(_, _)
S*(o_, ,) (67)

9" (_, e) = arc tan A* (_, ,_)

and

A* (_, e) = ]M* (j_, ,)] cos _o*(_, _)

B* (_, e) = IM* {j_, e)[sin 9" (_, ,)
(68)
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The frequencycharacteristicM*(j_, _) is uniquely related with the

time characteristic b[n, e]. This relation may be determined, for example,

on the basis of the equation of a sampled-data system

f2 {x 2 [n, _]} ---- Kr(e s, e)L' {x: [n]} (69)

Substituting in Equation (69)

e s

./J {xl [n]} : _J {1} ---- es _ 1 _

and

we shall obtain

whence

b In, e] ---- x2 In, e]

(1 -- e -s) U {b [n, e]} ----K_(eS, e),]

1
-- U {Ab[n -- 1, el} ----K_(e._,e)

Thus, on account of (27) we have

1/Ab In -- 1, el ---- 2_n K_ (eio,, e) dff_ (70)

In terms of Formulae (30) it is also possible to set the relation

between the function bin, e] and the components A*(_, e) and B*(_, e)

of the frequency characteristic; namely we have

0

Ab[n -- 1,_]_ _2 f'B*(:,,e)sin:,ndG,.
0

(70a)

5. CONNECTION OF SAMPLED-DATA SYSTEMS

Sampled-data systems may be connected one with another identically

as "ordinary" continuous dynamical system. The following connections are

thus possible: series and parallel connections, and connections in feedback

systems. Series and parallel connections of sampled-data systems will be
considered below.
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A connectionmadeaccordingto theschemeindicatedin Fig. 7 iscalled
a series connectionof sampled-datasystems.Let us assumethat the
samplersof all systemsconnectedtegether work synchronically and
generatepulseshavingidentical widths 7T andthe sameperiodT.

Fig. 7. Series connection of sampled-data systems

For a series connection of two sampled-data systems, we may write

the following equations

X_ut, (z, e) = K_ X_n (z),

(71)
X_ut,(z, _) = __ K_(z, e) X'_n,(z),

where k2 is the amplification of the sampler in the second system.

Since at the moments of the occurrence of pulses -- that is, for e = 0,

the signals at the primary and the secondary sides of the sampler are pro-

portional one to another, we have then the relation

X_n, (z) = k2 X_ut_ (z, 0) (72)

Taking into consideration this relation in the second equation (71),

we obtain

X_% (z, _) = K? (z, _)X_,,t, (z, O)

and hence using the first equation (71) we have

X_ut, (z, _) = K_ (z, e) K_ (z, O) X_n (z) (73)

In view of the above, the pulse-transfer function of the sampled-data

systems connected in series will be determined by the formula

X* (z, _)
K7 (z, _) -- out, -- K_ (z, _) g{*1 (z, 0) (74)

X_n (Z)

By means of simple induction, Formula (74) may be generalized for

the case of a series connection of N sampled-data systems, and then we
obtain

N-1

K_ (z, e) = K%(z, e) I {Kl, (z, 0). (75)
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It shouldbe emphasizedthat this formula, in spite of a great simi-
larity to the well-known formula determiningthe transfer function vf
a seriesconnectionof "ordinary" (that is, continuous)dynamicalsystems,
differs from the latter very essentially.In the caseof a seriesconnection
of continuousdynamicalsystems,the transfer function of the "series""
is equal-- aswe know-- to the productof the transfer functionsof the
individual systems

N

K (s) = I Ig_ (s) (76)

_=1

The relation (76) is not, however, correct for sampled-data systems,

since these systems in a series connection influence one another only at

the moments of the occurrence of pulses (for s ----0).

Therefore, the formula determining the transfer function of a series

of sampled-data systems contains only the product of the quantities

K_v(z, 0), that is, the transfer functions corresponding to the moments of

the appearance of pulses generated by the samplers working synchroni-

cally.

Let us now consider a parallel connection of sampled-data systems.

Such a connection is shown in Fig. 8. We may write the following equa-

tions

x_'n, (z) = xi_, (z) = ... = x*,nN(z), /

Xo_t, (z, e) + Xo_t 2 (z, e) + ... Jr X*outN (Z, e) ---- X_ut (z, e). ] (77)

o ----!_ --_

Fig. 8. Parallel connection of
sampled-data systems

Moreover,

equation

for the individual sampled-data systems

X*out_ (z, _) ---- g_ (z, e) X_n_ (z)

we have the

(78)
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Hence

x_y(z, _)+ [K,_(z,_)+ Ki_(z, _)+ ... + K_N(z,_)]X_e(z)

The pulse-transfer function of a parallel connection of sampled-data

.systems is thus the sum of the pulse-transfer functions of the individual

systems

N

K_ (z,_) = _ K,: (z,_). (79)
_=1

It may be noted that Formula (79) has a form analogous to the for-

mula determining the transfer function of a parallel connection of "or-

dinary" -- that is, continuous -- dynamical systems.

6. EXAMPLES OF INVESTIGATING SAMPLED-DATA SYSTEMS

Below we consider some examples of investigating simple sampled-

data systems.

Example 1. Suppose that we consider a sampled-data system, the linear
element of which is a first-order inertial element. We have to determine

the function of the output signal x2(t) = x2(n, _) with the assumption that

at the output of the system was applied in the form of a unit-step func-

tion xl(t) -_ 1(_.

Solution. We determine the output signal x2(n, _) using the equation of

a sampled-data system

A2 {xe [n, _]} : K_ (z, _)._ {xl, [n]}

Since the unit-step function xl(t) = l(t) was applied at the output,

then by virtue of the formula

,_' {x, In]} ----,_ {1} -- zz- 1 _; z=e_

we have

Z

,f2 {x2 [n, e]} = K_(z, e)_-_ l _ (80)

where i = I for 0 _ e _ _, and i = II for y_ e _ 1.

On account of the assumption that the linear element of the sampled-

-data system is a first-order inertial element, we obtain

1

K (s) -- 1 -- sT I

and consequently (See Table 2)
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K_ (z, e) = k l l _ z -- e-_(1-r) ]- z-e_ _ e-_ ; 0_<7 (81a)

K_i(z,_)= -- k- (i-- ePr)z e-_r- 7 _ e < 1 (81b)
z -- e-_

T

where _- T,

Taking into consideration these two formulae in Equation (80), we

shall obtain

lzz z I I{x2[n, el=k - i- z-e-_ z-- le-_ _,

fJ{x_[n,e]} = --k 1--e zr z _ 0_e<7['

(82)

z--e-_ z-- 1 e-_; 7_<1"

In order to determine the function x2(n, D, it is still necessary to

calculate the inverse transformation of the expressions (82). Namely,

making use of the table of the Laplace transformations of step functions

(Table 1) we find

- |z-- 1 _/ = - = 1,

[ z2 _I I (1 -- e-'(n-1))'J2-' (z -- e-_) (z -- 1) -- i--e-Z

{ Z } 1 (l__e_Zn).L)-I (z--e=_)(z -1) 6 -- 1--e-Z

Accordingly

[ 1--e-_O-_) l--e_r ]x 2(n,_)= k i -- _i-- e:Z e-_ + 1 e-Z e-_(n+1+_); 0 _ e < 7

e_r-- 1 (i --e-_(n+1))e-Z_" 7 _ e < 1
x2(n,e)=--k 1--- e -_

In the course of solving the above problem, we twice used the

tables -- namely, in determining the pulse transfer functions K*(z, _)

and in determining the inverse transformation .f2-1.

It is clear that tables cannot embrace all the functions encountered

in practice. In this connection, in the case of the necessary results not

being given in tables, the expressions K* (z, _) and also the inverse trans-

formation .f2-1 should be found by means of calculations.
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The calculationof the function K*(z, _) for the first-order inertial

element can be performed as follows.

Since the transfer function of the inertial element is expressed by

. the formula

1
K (s) =

1 + sT 1

then

h (t) ----.e-' = 1 -- e T,

T
Substituting t = t-T and _---- _ we obtain

and

h [0, e] ---- 1 -- e-P_

hr [n, r] ---- h It] -- h It -- 7] ----(ePr -- 1) e-P". e-P"

Thus, in accordance with (42)

Kr (z, e) = k [1 z - e-p(_-_) ]z--e-_ e-_ ; O_t<7,

K_ (z, _) = -- k 1-- e_
z --e-8 ze-_; 7<_ e < 1

(83)

The inverse transformation in Formulae (83) is calculated by expend-

ing rational functions into simple fractions.

Example 2. Let us now determine the function of the output signal x2(t)

for the system given in Example 1, with the assumption that the input

signal is xl(t) = l(t) and that the width 7T of generated pulses is consi-

iderably smaller than the period T of the occurrence of pulses (7 _ 1).

Solution. The function of the output signal x_) = x2(n, e) sought for is

determined in terms of the equation of a sampled-data system

z

.C {xe [n, e]} ---- K_(z, _) _--1 _ (84)

where K_ (z, e) is the pulse-transfer function corresponding to the case

of very narrow pulses (7 _ 1).

Since for 7 _ 1 we may apply the approximation

1 -- ePy _ --/_7

133



then, taking into considerationthis approximationin Formula (81b),we
find K'_(z, _)

z

K_(z,e)=kt]}, .... __ e-_ ; 0<e<l (85)
z--e-

The function K_(z. e) for the first-order inertial element is given in
Table 1.

Introducing the function (85) in Equation (84), we have

z 2

c_ {x2 [n, e]} = k_? (z -- 1)(z -- e-0 _e-p_

Thus. in view of the relation

/
Z2 9} --/ (z -- 1)(z -- e-0

we shall finally obtain

1

1 -- e-_'[le-_'(n+l)]

kfly [1 -- e-Z(.+l)] ;
x2 (n, e) ---- 1 :- e-Z O<e<l.

No

Laplace transformation of step functions

i[n]; n I> 0
F* (es) 2{I[n1}

Table 1
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1

2

3

•n, $

n (n - 1)

2!

e $

e 8

(e s -- 1)2

e 8

(es + I)
(es -- l)S

e $

(es- 1)4
(e_s + 4 es + I)

e $

(es -- i)'



No

6

r

10 I

11 I

12

13

14

15

I--F

17

_[nl;n_0

n (n --1) (n -- 2)

Table 1 (continued

3_

c_n

(- c)_n

ean

F* (es) 2{I[n]}

ne • (n-D ; n _ 1

n' ea (n-l) ; n _ 1

n (n -- 1)

2_
-- e=("-_-) ;n _2

(1 - e_n)
1 - e_

1
--- (1 -- e_ (n+l))
1 -- ea

1
(1 -- ea (n-l)) ; n _ 1

1 -- e a

1
(ec,n -- e,Sn)

e °' -- e_

n 1 -- e an

1-- e_' (1--e_) _

COS X "n

e,$

(es-- 1)4

e $

es-c_

e,$

(es - e_)_

e $

(es -- e,)8(es + e.)

e 8

(es - e_)3

e $

(es -- e_)(e s -- 1)

e $

(es -- e¢')(es -- i) es

(e s -- e _,) (e s -- i)

e 8

(es -- eh')(es -- e_,)

e s

(es- e.)(e s -- 1)_

es (es -cosx)

e2s - 2 es cos x + 1
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Table 1 (continued)

No

19

20

f [n];n_0
F* (e s)

21

22

23

sin x n

oC{_[n]}

25

26

i

27

e _,ncos x n

e _n siDxn

cosh x n

es sin x

sin x n

ean cosh x n

e_n sinh x n

COS X n

n!

sin x n

n!

t

28
sin x n

n

29

30

31

eZs--2e scosxW 1

e s (e s -- e c, cos x)

e _s- 2e se ¢,cosx_- e 2a

e s e_, sin x

e2s -- 2 es e_' cos x + e_

e s (es -- cosh x)

e2s -- 2 e s cosh x + 1

es sinh x

e _s-2e scoshx_ 1

e s(e s- e acoshx)

.............. x _ e 2_'

es e. sinh x

e2s -- 2 e s e a cosh x • e 2a

cos x

e $--- 1
e • sin \ e--_/

COS X

--7- co_(Sinx /
e • \_/

sin x
arc tan

e s -- COS X

i l--t-

_ e8
_. e

_ m
- " I

n ÷i (_ ÷ lle7
1't!

eS ]

!

COS_ n ffi (-- l)n 1 ee-_+ 1

i

I
!

e2s

n cosnn = n(--1)n
(e s + 1) 2

L

32
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Transfer functions of
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;ampled-data systems
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PART III

• OUTLINE OF THE THEORY AND PRINCIPLES OF DESIGNING

SAMPLED-DATA CONTROL SYSTEMS

1. REVIEW OF MORE IMPORTANT TYPES OF SAMPLED-DATA CONTROL
SYSTEMS

Sampled-data control systems are at present often used in different

branches of control engineering. They are particularly often applied in

the problems of control of slowly changing processes -- for example,

pressure and temperature in boilers, temperature in industrial furnaces,

etc., because in addition to the advantage of simplifying the equipment,

sampled-data control systems make it possible to attain a more profit-

able control process. In addition, these systems find a broad application

in radiolocation, remote measurements and remote control.

A block diagram of a sampled-data control system is shown in Fig. 9.

J
l 4
[_ ............................ .3

Fig. 9. Block diagrams of a sampled-data
control system (1) controlled system, (2)
measuring element, (3) input element, (4)
summing element, (5) sampler, (6) correct-
ing element, (7) element of the auxiliary

feedback

A typical property of sampled-data control is the presence in the

feedback branch of a sampler transforming the signal usually constitut-

ing a continuous function into a signal in the form of a sequence of

rectangular pulses.

We distinguish three main types of sampled-data control systems

depending on the construction of the sampler.

To the first type belong systems with samplers transforming the

input signal into a signal in the form of rectangular pulses with heights

proportional to the values of the input signal, at the moments of occur-

rence of pulses. The period T and the width ?T of pulses generated by
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samplers are constant quantities for such systems. The principle of opera-

tion of such a sampler has already been discussed; an ideal scheme of

it is shown in Fig. 4.

To the second type of sampled-data control systems belong those

with samplers transforming the input signal into a signal in the form "

of rectangular pulses the widths of which are proportional to the values

of the input signal at the moment of the appearance of pulses. The heights

of pulses in systems of this kind are constant, and thus do not depend

on the input signal. The operation principle of the sampler in the second

type of systems is explained in Fig. 10. The bar 1 set into periodic motion

by means of a special mechanism 5 presses the indicating needle 2 to the

conducting surface 3 which is split and insulated in the cross section

"a- a". Two batteries 4 with electromotoric forces Eo are connected

to the conducting surfaces. Similarly as in the case of samplers of the

first type, the input signal xl(t) of the sampler is the deflection of the

indicating needle 2 from the central position. The output signal x2(t) is

the voltage on the terminals a, b. The signal has the form of rectangular

pulses with constant heights, but -- owing to the wedge-shaped bar 1 --

differing one from another as to their width and sign, which are de-

pendent on the input signal xl(t) (Fig. 11).

I !2 ,
II/lllllllJJ!Jll!lllllll_ltllrll

_E f E

T

XI, Y(i7)

I
o
b

Fig. 10. Operation principle of the
second-type mechanical sampler
(1) bar, (2) indicating needle of the
galvanometer, (3) conducting surface_
(4) batteries of voltage Eo, (5) driving

mechanism

g I1 I-I rl N i! tl ;
Fig. 11. Pulse signal generated by the

second-type sampler

fl N U U fl t---

Fig. 12. Pulse signal generated by the
third-type sampler

To the third type of sampled-data control systems belong those with

samplers transforming the input signal into a signal in the form of rec-

tangular pulses having constant heights and widths but differing one

from another by their sign, which is dependent on the input signal

(Fig. 12).
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The operation principle of this type of samplers is explained in

Fig. 13. Such a sampler differs from the one previously discussed only
by the shape of the bar which in the present case is rectangular.

/ _ 1 _2

m EO

1E° T

Fig. 13. Operation principle of the

third:type sampler

Fig. 14. Pulse signal in the case of a

delay system with a key

Control systems of the first and the second type may be considered
as belonging to the category of linear systems, because in the case of

those systems certain parameters (the height or the width of pulses) of

the signal correcting the controlled quantity are proportional to the value

of the controlling signal. Systems of the third type are classified with

nonlinear systems. There is a great similarity between this type of sys-

tems and systems with relay control; namely, if a system with relay

control is provided with a breaking key, then such a system will differ
as regards the manner of working from a sampled-data control system

of the third type only in that during the duration of a pulse there may

occur in it a change of the pulse sign (as a result of the change of the

sign in the input signal) (Fig. 14).
In our further considerations, we shall confine ourselves to the in-

vestigation of sampled-data control systems only -- that is, to the systems

of the first and second type.
Note that systems of the first type are most often applied in radio-

location engineering, in remote measurements; however, in industrial

control engineering -- namely in the control of slowly changing proces-

ses, such as temperature, concentration, pressure-systems of the second

type are mostly applied, that is, systems with varying widths of pulses.

An important advantage of sampled-data control systems of the

second type is the full utilization of the power of the operating element
-- for instance of the servomotor which operates with a constant angular

velocity. In systems of the first type, full utilization of the power of
a servomotor may take place only at the moment of the highest values

of the controlling signal. For the rotational speed of the servomotor (or

another corresponding quantity) is proportional to the height of rectan-

gular pulses generated by the sampler.
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Another advantageof a sampled-datacontrol systemof the second
type is that the samplerof sucha systemremovesthe effect of non-
linearity of a nonlinearelement.This happenswhenthe nonlinearele-
ment on which the sampleractshasa symmetriccharacteristic(Fig. 15).

v--

. L

__q

t

't

Fig. 15. Explanation of the elimination of the

second-type non-linearity effect by a sampler

In the Part II of this paper, we were concerned with the method of

investigating sampled-data systems of the first type. Now we shall prove

that, with suitable assumptions, this method can also be applied to in-

vestigating sampled-data systems of the second type -- that is, those

provided with samplers generating pulses with varying widths. Namely,

let us pursue the following reasoning.

It should be noted that for a sampled-data system of the second

type, the signal at the output of the sampler is a sequence of rectangular

pulses with constant heights, which are equal to

and with the widths y(n)

function xl(n)

k sign xi (n)

proportional to the absolute values of the

y (n) = _Iz_ (n) (86)

Thus if we denote the response of the dynamical element to a unit-

-step excitation by the symbol h(t-), then in the interval n ÷ _,_t-_n _ 1

the output signal x2(t) of the sampled-data system of the second type
will be determined by the formula
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oo

x2 (t) ----_ k sign Xx (n) [h (t--- m) - h (t-- m -- ?)]

Taking then the assumption

max y (n) (( 1 (87)

which is satisfied in the case of small values of the input variable xl(n),
we may use the approximation

h (t- -- m -- ?) _ h (t--- m) -- ?h' (t- - m) (88)

Hence
oo

Xl (t) _ _ k sign xl (m) y (m) h' (t--- m) =
m=O

= kx _ Ix1 (m) tsign xl (m) h' (t -- m)
m=O

and owing to the obvious equality

Ixl (m) Isign xl (m) = Xl (m)

x_(-t)_l_xl(m)h'(-t--m); n <t-<. + 1
ra--O

where

_-_- k_.

Thus, after expressing the above formula by means of step functions

dependent on the parameter _, and after applying the Laplace transfor-
mation, we shall obtain

Y2{x2 [t-,e]}_ K_ (z, _) Z {Xl It]} ; 0 <_ < 1 (89)
where

K_ (z, s) :- "_ {k_.h' [t-,e]}

Therefore, owing to Approximation (88), the properties of a sampled-

-data system of the second type can be expressed by means of the func-
tion

,L) {k_h' It, _]}
K? (z, e) = K_ (e_, e) -_

_7

which, as before, we call the pulse transfer function of sampled-data
systems of the second type.

The functions K*(z, s) for more important dynamical systems are
appended in Table 2.

In view of Formula (89), in considering sampled-data systems of the

second type, we can fully utilize the method presented in Part II of this
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paper. Concluding, we should note that Approximation (88) which con-

ditions the application of this method is practically admissible provided

that the sampled-data system under consideration is characterized by

a sufficient sensitivity.

2. EQUATIONS OF A SAMPLED-DATA CONTROL SYSTEM

Every control system, and thus in particular also a sampled-data

control system is -- as regards its structure -- a system with a negative

feedback. In a control system, we can always distinguish two basic ele-

ments -- namely, a controlled system and a controller. A controller of

the simplest sampled-data control system consists of a measurement

element, a sampler and an operating element -- for example a servo-

motor (Fig. 16).

_--_-[Controlled element_--_

Power J J MeQsurmgelementI
element l I I

5ompler fforrector

Fig. 16. Simple sampled-data

control system

If we denote the pulse transfer function of a system of the first type,

which is open before the sampler (that is at the point "a") by the symbol

K* (z, s), then for a closed system the following formula will hold

K* (z, _) X_ (z, 0). (90)
X*y (z, e) = 1_-g_ (z, 0)

Formula (90) is called the "equation of a sampled-data feedback

system", and the expression

K* (z, e)
g,*,i(z,_) = 1 ÷ Kt(z, 0) (91)

is called the transfer function or the characteristic function of a sampled-

-data feedback system.
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In the caseof very narrow pulses,evidently we haveto substitute
the functions K_(z, _) and K_(z, 0) for Kr(z, e ) and K_ (z, 0) in Formula

(91); then Formula (91) will take the form

Ks*_ (z, _) -_ K_ (z, _)
1 + Ky(z, 0) (91a)

For sampled-data systems of the second type, we substitute the

functions K;(z,e) and K_(z, 0) for K_(z,e) and K}_(z, 0); hence we have

K_ (z, e)
(z, -----l K (z;bT (915)

Formula (91) (and also Formulae (91a) and (91b)) differs from the

analogous formula determining the transfer function of a system with

an "ordinary" (that is, continuous) feedback, primarily in that it contains

in the denominator the function K*(z, 0) corresponding to the moments

_= 0. This fact is an obvious consequence of the presence of the sampler

in the feedback branch. Owing to the sampler, the feedback branch is

closed only at the moments e = 0, and therefore the function K_(z,

appears in Formula (91) instead of the function K*(z, e), and the functions

K_ (z, 0) or K;(z, 0) in Formulae (91a) and (91b).

3. STABILITY OF A SAMPLED-DATA CONTROL SYSTEM

3.1. Frequency criteria of stability

A basic condition of correct operation of control systems -- and

thus in particular of sampled-data control systems -- is their stability.

As we know, by the stability of a dynamical system, we mean the pro-

perty consisting in that its pulse response (the output signal actuated by

an excitation by means of the Dirac function) is a decaying function,
and accordingly it satisfies the condition

lim k (t) = 0
t-_-co

From the theory of dynamical systems, we know that for a contin-

uous-data linear system to be stable, it is necessary and sufficient that

the poles s_ of the transfer function K(s) of the system have negative real
parts

_/_o s, < 0

that is, that the poles s_ lie in the left semiplane of the complex varia-
ble s.
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It is clear that eachsampled-datasystemcontainingno feedbackis
stablewhenits linear elementis stable.Theinvestigationof stability, of
sampled-datasystemscontainingno feedbacksreducesto the problemof
investigatingits linear part, and thus offers no major difficulties. How-
ever, the investigationof stability of sampled-datafeedbacksystemsre-"
quiresthe applicationof specialmethods.

Let us considerthe transfer function of a sampled-datafeedback
system

P_ (e s, e) K_ (es, e)
g_ (e s, e) -- Q. (e_) 1 + g7 (e s ,0)

It is evident that the sampled-data system is stable if and only if

the poles of the function K_,i(e*_, e) lie in the semiplane cTZ_s _ 0 for the

rational function g_* i (e _, e) -- 2 {x_ [t-, _]}
{x0 [t]} can always be expanded into

simple fractions of the form

e s

(es -- es,_

which as Laplace images of step functions represent the following func-

tions fv[n]

{ e_ } n(n--1)"'(n--_+2)e_(,-_,+l,Iv In] = f2-1

However, the functions fv(n) satisfy the condition

lim ]_ In] = 0
n-'>_

if and only if c_, sv < 0 that is, only when the poles of the transfer function

K* (e _, e) lie in the left semiplane of the complex variable s.
S,i

A direct calculation of the poles s_ for investigating whether they

satisfy the condition _]_s_ _ 0, is very troublesome, and in a general case

(with a high degree of the polynomial Q*(e')) it is possible only in an

approximate manner. Therefore, in practice_ in order to determine the

stability of a sampled-data control system, we use methods requiring no

knowledge of the poles of the function _* re s s). One of such is the meth--- $,i x ,

od based on frequency characteristic, and constituting an adaptation of

the Nyquist stability criterion in the theory of sampled-data systems.

This method is presented here below.

Let us consider the function

q_* (e ,_) = 1 + g_(e _, 0) (92)

constituting the denominator of the transfer function K* [e s _) with a
s,i \

sampled-data feedback system.
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The zeroes of the function _*(e 8) are evidently zeroes of the transfer

function K* Ce8 e) and the poles of the function q_*(e8) are poles of
' K.(eS, 0).Since • sK l (e, 0) is the transfer function of an "open" sampled-data

system, hence it follows that in the case in which an open system is stable,
the poles of the function _*(e s) lie in the left semiplane of the complex
variable s.

Let us choose on the plane s the contour C, shaped as a rectangle and

plotted as shown in Fig. 17, and assume that the abscissa of the segment

C4 of the contour C increases to infinity

O0 ----> OO

If we assume that on the contour C the function q_*(e8) has no zeroes

and no poles, then by virtue of the theorem concerning the increase in

the argument, we shall obtain the following formula for a single passage
over the contour C in the clock-wise direction

Ac arg _* (es) = 2_ (M -- N) (93)

where M is the number of poles, and N the number of zeroes of the

function _*(e 8) lying in the region limited by the contour C.

j6J

÷yc

c, I
! ¢0

Fig. 17. C-contour by means of

which the stability of a sampled-
-data control system is determined

3m_'(e/_)

Fig. 18. Plot of the function q_* (es)

If the system under consideration is stable with the open feedback
branch, then -- in accordance with the above remark -- M = 0, and

Ac arg q_*(es) = -- 2_N

Notice that in the case of stating that N _- 0, owing to the periodicity

of the function _*(eS), this function has no zeroes not only in the region
under consideration, but also in the whole semiplane _e s_0. Hence the

condition of stability of the sampled-data feedback system is expressed
by the formula

/I_ arg _* (e_) = 0 (94)

Since the obvious equality

_* (e-i=) ----_* (e_)
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holds,then with the changeof the veriable s along the imaginary axis j(;9

from --j :_ to j _, the function q_*(e8) will correspond to a certain closed

curve

q_*(eJ_) = 1 + K_ (eJ_, O)

This curve, drawn on the plane with the rectangular coordinates

c_eq_*(ei_), 3,n_*(e/_)intersects the real axis at least twice -- namely at

the points _ ---- 0 and _ = _ :_. The above property follows immediately

from the follow__ng equalities

e j° -_ 1 i e + jn = -- 1

consequent upon which the expressions

KT (eiO, O) and K_ (e j_, O)

are at these points real numbers.

With the change of the variable s along the straight line C_ from

o = 0 to o _- oo, the function q_*(e_) will constantly remain a real quantity

(Fig. 18) -- that is, will vary along the real axis, for instance

from q_*(e1_) = 4_ to lim _* (e°+I'_) -_ 42
O--_oo

Subsequently, with the change of s along the straight line C2 and

with the assumption that o---> c_, the function _o*(e8) will not change its

value. With the change of the variable s along the straight line C3 from

o ---- oo to o ---- 0, the function _*(e _) will again vary along the real axis

from 42 to 4_, since we have

q_*(eo-i,_) __ q_* (eo+i=)

Summarizing what has been said we state that the increment of the

argument of the function _*(e _) along a closed contour C is entirely de-

termined by the curve corresponding to the change of the variable s

along the imaginary axis from _ = -- :_ to _2 = :_, since we have

_ arg _* (e_) = LJarg _* (eJ_) (95)
_ [-z, =]

Notice that the total increase in the argument of the function q_*(e=)

along the contour C is determined by the number of rotations of the

vector O--a----q_*(e j_) with change in frequency from --:_ to :_ (Fig. 18).

ffhe increase in the argument of the function _*(e =) along the contour C

is then equal to zero only in the case in which the plot of the curve _o*(e _)

does not comprise the origin of the coordinate system.

Let us now consider the function

K? (d% O) = IK7 (e j_, O)Ie j°_''°_

which represents the frequency characteristic (for t = 0) of an open

sampled-data feedback system. The plot of the function K_(e j'_, O) is
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obtained from the diagram of _o*(ej_) by shifting the origin of the coordi-

nate system "to the right" by the quantity 1 (Fig. 19). The function

_*(e j_) in Fig. 19 is then represented by the vector having origin at the
" point --1, j0 and accordingly the stability of a sampled-data feedback

system is expressed by the following theorem.

JrnK'(eJ_,O/

=0

ReK°(e/_,O)=

÷.._7

C_

C3

Fig. 19. Nyquist diagram of an open

sampled-data control system

Fig. 20. C -- contour in the case of

poles lying on the imaginary axis

Theorem 1. For a sampled-data feedback system to be a stable system,

in is necessary and sufficient that the Nyquist diagram K*(e j_', 0) of a stable

open sampled-data system shall not contain the point --1, j0 for the

frequency change from --_ to n.

On account of the symmetry (with respect to the real axis) of the
characteristic K_ (ei_, 0) for 0 _ _ _ n and -- n _ _ _ 0 in determining

the Nyquist diagram we may, in the interests of simplicity, disregard

the branch of the curve corresponding to 0 _ _ _ n.

In proving Theorem 1, we assumed that a system is stable after the

feedback branch has been opened. In practice, however, we often use

a control system which does not satisfy this condition. Of such are, for

example, the "astatic systems" -- that is, systems containing integrating

elements. It is then necessary to extend the frequency criterion of stabli-
ity so that they shall cover the case of astatic systems. In this connection,

we shall follow the reasoning given below.

Let us assume that the function ,p*(ei;,) has poles on the imaginary

axis. At the poles of the function _*(ei_) the characteristic KT (e j_, 0) takes,

of course, an infinite value. Considering a closed contour C' on the com-

plex variable plane s (Fig. 20), which differs from the contour C from

Fig. 17 in that by semicircles having infinitely small radia, it sweeps

round the poles lying on the imaginary axis, we shall obtain, for systems

having the characteristic under consideration -- by virtue of the theorem
concerning the increase of the argument -- a stability analogous to that

given above. In the case under consideration, with the change of s along
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"infinitely small" semicircles, the vector qJ*(eJ_),and thus also K_ (e_, 0)

will vary along arcs having radia tending to infinity and the angle equal

to =r, where r isthe order of the pole.

For first-orderasiaticsystems which are most often applied in prac-

tice,the function q_*(e'_)has a first-order pole at the origin of the coordi-

nate system. In investigating the stability of such systems, we may then

use the theorem given above, provided that the Nyquist diagram K_ (ej_,0)

of an "open" system is supplemented by an arc having the radius R--+ c_.

The orientation of this arc must be opposite to the direction correspond-

ing to that of sweeping round the pole; itmust then have a clock-wise

direction.

The characteristics of stable (a) and an unstable (b) astatic sampled-

-data control systems are shown in Fig. 21.

Using the frequency criterion of stability,we can determine the

limit values of the parameters of a system -- for example, the greatest

total amplification in the feedback loop, or the greatest admissible width

of pulses, for which the system is at the limit of stability.This problem

isillustratedby the following example.

Example. The first pulse-transfer function of a system of the first

type with an open feedback branch is given by the formula:

Kr (z,_)= k [l _ z -- e-P(I-Y) l- Z_e__-e -p_ ; 0_<7. (96)

Determine the greatest admissible amplification k which ensures

a stable operation of the system after the feedback branch has been closed.

Solution. The stabilityof a sampled-data feedback system is dependent

on the frequency characteristic K]*(ej_,0). According to (96),we have

e1_ -- e-80-r) lKt (el_, O) _- k 1--- el _ _ e_. ]

The diagram of this characteristic for the interval 04 _o < _--

drawn on the plane with the coordinates c_e K+}(n 1_', 0), g,, KT(ei_, 0)- is

shown in Fig. 22.

By virtue of Theorem 1, a system with a closed feedback loop is

stable, when the Nyquist diagram does not contain the point -- 1, j0 --

that is, when the inequality

K_ (e1_,0)_ -- 1

issatisfied.However, since in view of Formula (96)we have

e-_

K_ (e1_, O)---- -- k (ePr -- 1) 1 -_ e-8
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then the system will be stable for

k < klirn
l+e-P

(97)

3rnK?_e;_o)

¢*jO

X
X x\

', ', eo_<;c_'?o;
II

././
Fig. 22. Nyquist diagram of a

simple sampled-data system

Fig. 21. Nyquist diagrams (a) of a stable

astatic sampled-data contrel system,

Cb) of an unstable astatic sampled-data

control system

Using the relation (97), the parameters/_ and y being given, we can

determine the greatest admissible amplification k in the feedback loop.

3.2. Time criteria of stability

3.2.1. Introduction

The methods of investigating the stability of sampled-data control

systems, discussed in the preceding chapter, are based on the frequency

characteristics of sampled-data systems. These methods, valuable as they
are in designing, have a certain practical inconvenience. Namely, since

experimental determination of the frequency characteristics of sampled-

-data systems is almost impossible, then these methods are practically

useless in the cases in which the analysis of a system must be based on
the data obtained from measurements.

Below is given a method making it possible to determine the stability

of a sampled-data system directly from the knowledge of the time charac-

teristic of an "open system". Moreover, an analysis is eifected concerning

typical time characteristics, which yields diagrams determining the
"stability zones" of sampled-data control systems under consideration.

The results obtained make it possible in certain cases to investigate stabil-

ity almost immediately from the knowledge of the time characteristic

(the response to a unit-step excitation) of an open control system, which

can relatively simply be determined experimentally. Note that such a
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procedureis appliedby certain authorsin the caseof continuous-data
controlsystems.

We find it convenientasregardsthe methodof analysisperformed,
to distinguishthe static and astaticsystems.The useof sucha classifi-
cationof controlsystemsisof coursearbitrary.

The methodsof investigatingstability, as presentedin this chapter,
were earlier presentedby the presentauthor in the paperentitled "The
numericaloperatormethod".Belowis givenaslightly different treatment
of thesameresults.

3.2.2. Determination of the stability of a sampled-data system from

knowledge of the open system time characteristic

Let us consider a sampled-data feedback system (Fig. 23). If the feed-

back loop is broken before the sampler (at the point a), then we obtain

an ordinary sampled-data system, the theory of which was given in
Part II.

PowerelementI [__ ent__lMea_,rinqI

I x2(t),_arnpler .o "

II (

Fig. 23. Block diagram of a sam-

pied-data control system

Let us write the equation of an open system at the point (a)

_2 {x2 (n, _)} = g*(z, e)_ {zl (n)l (98)

Assume now that at its output -- that is at the point (a) -- an

excitation is appled in the from of a unit-step function. At the output of

the sampler, there will then appear a sequence of rectangular pulses with
identical unit heights; thus we shall obtain

r: {x,(n)} = L' {1} - zz- 1 _ (99)

hence the signal x2(t) may be expressed by the formula

. Z

/J {x2 (n, e)} ----K_ (p, e)z_--- 1- _ (loo)
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If, in turn, we assume that the (open) sampled-data system under

consideration is stable, consequent upon which

lira Ix2in, _)- x2(n - 1,_)]= 0* 006)
n--)*_

then in formula (102) it will be possible to drop all the terms with suf- "

ficiently high coefficients (n _ N), for which

Ix_in, _)- z_ in - 1,_)]< _ (107)

where _ we may practically take, for example, 0.1 k or 0.05 k, where k

is the total amplification in the feedback loop. We shall then obtain the

approximate formula

N

K_(ei_,_)_x2(O,e)_- _l[x2(n,e)--x_(n- 1, e)le -j_" (108)
n=l

which is sufficiently accurate for determining the stability of a closed

sampled-data control system.

According to the results obtained in the preceding chapter, we deter-

mine the stability of a system from the following

Theorem. A sampled-data feddback system is stable, if and only if

the Nyquist diagram K*(e j_, 0) of the open system does not contain the

point -- 1, j0, with the change of _ from --_ to ÷ _.

In view of this theorem, the method of investigating the stability of

a sampled-data control system in terms of the time characteristic x2(n, _)

of the open system, is reduced to:

1 ° determining on the basis of Formula i108) the function K*(e j-, 0),

from the knowledge of the time characteristic x2(n, _) of the open system;

2° drawing the Nyquist diagram; the stabil_ity of the system is then
determined on the basis of the theorem cited above.

The Nyquist diagram K*(e i_, 0) can be found in the easiest way by

calculation of its components

N

}_,,, K* (e i-, 0) : xe (0, 0) + X [xe in, 0) -- x2 (n -- 1, 0)] cos n _5,

"=_ (109)
N

3,,K* (ej_,0) ------ _-I[x__(n,0)--x2 (n --I,0)]sinn_.

n=l

From the considerations presented above, we may draw an interest-

ing conclusion -- namely, that the stability of a sampled-data control

system depends only and exclusively on the plot of the time charac-

* This formula is a necessary but not sufficient condition of the stability of

a sampled-data system.
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Sincethe imageof a step function canbe representedin the form
of.theseriespower

,c {j(_} = _ 1(n) z-" _ (101)
n=0

then we shall obtain

oo _ oo

X x2 (n, e)z-" = (1 - z-1 x_ (n, _)z-" =
Z

n----0 n=0

oo

= xe (0, _) + _: [x2 (n, _) -- x2 (n -- 1, e)] z-". (102)

n=0

From Equation (102), we can determine the frequency characteristic

of a sampled-data system. Namely, in accordance with the former consid-

erations if the frequency characteristic M*(j_, _) of a sampled-data sys-

tem is determined by the formula

M* (j_, e) = x2_te,4y (n,_} x_u_4y (n, e) (103)
z_ (n) = -- ceJ_'° -

where x2 ,t_dr (n, e) is the steady-state component of the output signal

x2(n, _), and

xl (n) = ceil,, (104)

is the exciting signal, then we can easily prove the following.

Property. The frequency characteristic M*(j_, e) of a sampled-data

system is equal to the expression K* (e__, e) which ks obtained by substitu-

tion, in the transfer function K* (z, _), the displacement operator z for the

function eJ_:

M* (j_, e) = K* (e 1°', e) (105)

The above property can be proved in terms of the equation of a sam-

pied-data system, with the assumption that xl(n) = c e j_''_. After elemen-

tary transformation, we arrive at Formula (103).

By virtue of Formula (103), the frequency characteristic can then be

determined from knowledge of x2(n, _)

oo

M* (j_, e) = K* (ei_, e) = x_ (0, e) + 2 [xe (n, e) -- x_. (n -- 1, _)] e-i_,
n=l

where x2(n, e) is the function of the output signal actuated by a unit-step
excitation

z, (t) = 1(t)
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t
teristic x_(t-) at the moments t--- T --n (n = 0, 1, 2 .... ) -- that is, on

the plot x_.(n, 0). The behavior of the characteristic x_(t) between the

moments t-= n has absolutely no bearing on the stability of the system.

This fact becomes obvious if we notice that owing to the presence of the

sampler in the feedback loop, the control system is closed only at the

moments t = n.

The plot of the time charakteristic x2(n, _) can evidently be deter-

mined experimentally or can be calculated by the analytical method. It

should be emphasized that the method presented is suitable for the in-

vestigation of systems which are stable after the opening of the feedback

branch -- that is, to the investigation of systems which do not contain,

for example, elements with astatic characteristics.

Below, it will be proved that this restriction may be avoided in

a relatively simple way. Namely, notice that for an open sampled-data

system having an astatic characteri_ic and containing only one integrat-

ing element, the following relation must always be satisfied

limA_x2(n--l,_)=-0; 0_<1 (110)
n--_co

where

A 2xe (n -- 1, _) ---- A [xe (n, _) -- x2 (n -- 1,_)] =

=- x2(n _- 1,_) -- 2xe(n, e) + x2(n -- 1, e), (111)

and x2(n, _) is the response of the sampled-data system to a unit-step
excitation.

Thus, if the formula determining K_ (e j_, 0) is transformed so that

under the sign of the sum there appear terms of the form A_x2(n-- 1, 0) e j_n,

it will be possible, similarly as before, to confine ourselves in the approxi-

mate formula to a finite number of terms in the series. Namely, let us

follow the reasoning set out below.

If we multiply both sides of Formula (102) by z - 1, we shall obtain

(z -- 1) g_ (z, _) = (z -- 1) x2 (0, _) +
oo

-4- (z -- 1)_ [x2 (n, e) -- x_(n -- 1, _)] z-" (112)

whence, after elementary transformations

(z -- 1) K_ (z, _) = (z -- 1) x2 (0, _) + _Jx__(0, _) +

÷ _ A [x2 (n, _) -- xe (n -- 1, _)] z-',
n=l
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or

where

and

(z -- 1) Kr (z, _) ----(z -- 1) x_ (0, _) + Ax2 (0, _) +
o_

+ XA2x_(n -- 1,_)z-",
/l=l

A e x2 (n -- 1, _) ----A Ix2 (n, _) -- x2 (n -- 1, _)] =

-=- xe (n --k 1, e) -- 2x2 (n, e) -k x2 (n -- 1, e)

(113)

(114)

Ax2 (0, _) ---- x2 (1, _) -- x2 (0, e) (115)

The frequency characteristic K*(e j_, 0) of an open sampled-data

system will then be expressed by the formula

oo

1 _ A _x 2 (n -- 1, O) e-i_n --}-K*(el_"O) = ei_ -- 1

n=l
!

Ax2 (0,O) (116)
--I-x2 (0, O) -4- ei_ _ 1 "

Subsequently, using the relation ' (110), which is correct for an astatic

characteristic, we may, in the above forrnula, drop all the terms with the

indices n > N. We then obtain the approximate formula

N

1 X A2 x2 (n -- 1, 0) e-j_" +K* (el_, O) _ ei_ -- 1

/1=1

Axe (0,O) (117)
+ x2 (0, 0) + e_- _ _.

It is also possible to deduce formulae determining the components

of the complex function K*(e _', 0). Namely, taking into consideration the

obvious relations

c)_e ei_,- 1 -- 2 ' el_,- 1 2

and using the formulae determining the components of the product of

complex numbers, we shall obtain

K*(e i_, 0)_xe (0, 0) -- lAx(O, O) A-

N

1 X Ae x2 (n -- 1, 0) cos _n -4-2
/l=l
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N

VA_x2(n- 1, 0)sin_n, (119)1 cot y2

N

gmK*(e'_',o)_l_A2xi(n - 1, O)sin _n +
n=l

N

1 ____2 cot A_x2(n -- 1, 0)cos_n +

n=l

1
2 cot-_Ax2(0, 0). (120)

In terms of the formulae obtained determining C_eK*(eJ_', 0) and

gm K*(e _, 0), from knowledge of the time characteristic x2(n, 0) it is

possible to find the plot of the Nyquist diagram of an open sampled-data

control system containing an intergrating element (for example, a servo-

motor). Knowing the plot of this characteristic in the interval _c [--n, _],

we can determine the stability of the control system.

Concluding these considerations, it is worth noting that the knowl-

edge of the Nyquist diagram K*(e _, 0) may be useful not only in deter-

mining the stability of a control system. From the plot of the function

K*(e _, 0), we can draw conclusions concerning the degree of stability

and we can anticipate what correction elements should be used for improv-

ing the quality of the control process.

3.2.3. Stability conditions o] a static sampled-data

control with a typical characteristic

The method presented in the preceding paragraph may be applied

to any static or astatic sampled-data control system. In spite of its

universality, this method has a certain drawback, in that it is n_cessary

to perform preliminary calculations in order to investigate the stability

of a system. It will be shown below that in the case in which the time

characteristic x2(n, 0) of an open samplcd-data control system is typical,

as indicated in Fig. 24a, the stability of the system may be determined

directly from the plot of x2(n, 0), without the necessity to determine the

Nyquist diagram K*(e j_, 0). The reasoning is based on the substitution of

a simplified characteristic in the form of a broken line in Fig. 24b for the

characteristic from Fig. 24a.

The simplified characteristic may be represented analytically in the

following manner
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0; n <n_
k (n -- nl); nl _ n < n2 (131)

x 2(n, 0) = / n2 -- n,

Ik; n _ n2

Since the input signal x2(t ) is actuated by a unit-step excitation l(t),

then by virtue of the formula presented above, the coefficient k is equal

to the "resultant" amplification in the feedbeck loop.

b
x2(n,o) x2(n,o)

I I I I I I

I I#1 ! I I I I I I I I I I I

?"_ I ' I I I I I I I I I I I
/ n t , I I I I I I I I I I

1 2 3 4 5 6 7
p

n o

-'"/ / /
_' 2 3 4

t--T--I
5 6 7

Fig. 24. Typical time characteristic of an open static sampled-data control system

Using the Laplace transformation, we may express the simplified

characteristic x2(n, 0) by the formula

k z

.f? {x2 (n, 0)} = n_-- nl " (z -- 1)e [z-"'-z-"2] '1 (122)

where z -_ e s is the displacement operator.

Since we have assumed that a unit-step excitation was applied to the

input of the system -- that is,

z

.L_{x,(n)} ----L _{1} -----z-- 1 _ ' (123)

then

/2 {x2 (n, 0)} k z-", -- z-'_ (124)
g*(z, 0)--L){x l(n,0)}--n2_ n," --z" 1-

Substituting into the above formula, in place of the displacement

operator z, the function eJ-, we shall obtain the expression K*(e j_, 0),

which determines the frequency characteristic of the open control system

k . e-i_., -- e-/_.2 (125)
K* (ei% O) -_ n2 _ nl - eio_ -- 1

In accordance with the theorem cited in the preceding chapter, the

stability limit of the system is determined from the equation
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a) c/i_eK* (e j_, 0) = -- 1, } (126)b) g.. K* (e j_, 0) = 0.

For this purpose, we shall investigate the roots of the equation

K*(e j_, 0) + 1 ---- 0 (127)

Taking into consideration in this equation the expression (125), we

shall arrive at

k (e-i_o., -- e-i_. 0 + (n_ -- nl)(ei_ -- 1) _- 0 (128)

and hence, after performing considerable elementary trigonometric

transformations, we shall obtain the following relations (c) and (d)

c) 2k sin _ sin _fl -- (n_ -- nl) (cos _ -- 1) _- 0,1 (129)
d) 2k cos _ sin_fl -- (n._ -- n,) sin _ -_ 0, !

where

n 1 -_- n 2 nl -- n 2

The above relations will be considered as a set of two equations with

two unknowns _ and k. Dividing Equations (c) and (d) one by the other,
we shall find the unknown

hence,

cos _ -- 1
tan _ -- -- tan -- (130)

sin _ 2

_-- 2 +(v+ 1)_; _-----0; ___1; -+2;...

and

(_ + 1)2n (131)
----_v-- l+nl+n_

Then, for example from Equation (d), we shall determine the un-
known k

sin _,
k ---- k_ -_ (n_ -- nl) 2 cos _. _ sin _ fl -

sin (v÷l) 2_
1 -_ nl + n2

= (n2 - n,)
nl+n2 (_+l)_sin n 1-n_

2COSl_t_nl_n_ 1 +n l+n._

This formula can be simplified. Namely, if we take into consideration

the obvious relation

(132)

(,, + 1)_
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whence

nl + n2 -- 1 1 (133)
1 q- n I nu n 2 1 q- n, -{- n2

n 1 -9I- n 2
cos (v + 1)_ = (-- 1) "+1cos

(v + 1)a

1 + nl + ne

and then if we introduce the transformation

sin (v+l)2z --2sin (_ +1)_
1 q- n, q- n2 1 -{- n I q- n 2

we shall obtain a simple formula defining k,

1 + n, + n2
(134)

cos (vq- 1)_ (135)
1 + n, + n_

(v + 1)_
sin

1 + n 1 + n2
k, = (-- 1)" (ne -- nl) (136)

sin ne -- nl (v + 1)
1 Jr nl + n_

This formula is ambiguous and determines the stability conditions

for the particular components of the control process. Since we are consid-

ering a system with a negative feedback, of interest to us in the formula

obtained are only those values of the number ,, which yield positive values

of the coefficient kv, with n 1 and n2 as assumed. Thus, for example, we

should not take into consideration those values of _ for which the expres-

sion

+ 1 (137)
1 + n, q- n2

is an integral number. For we can verify that then kv = -- 1.

For the fundamental component k0, we shall obtain the formula

sin 1 + n, + n= (138)
k0 = (n., -- n,)

sin n2 -- nl

1 q- n 1 + ne

It can be shown that this formula gives the lowest value of the

coefficient kv > 0. In view of the above, the Formula (138) determines the

greatest admissible amplification in the feedback loop. For the amplifi-

cation k > k0, the system is unstable. Figure 25 shows the plots of the

function

k0 = 1 (n,, nf) (139)

where n_ is treated as a parameter and n2 -- as an independent variable.

Making use of these plots, we can easily determine the stability of a static

sampled-data control system from knowledge of the time characteristic
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x_(n, 0) of the open system. Note that k0 is not a function of the ratio of

the "delay" time to the "steady-state" time nl in the waveform of the

time characteristic, but constitutes a function of two variables nl and n2.

• From the plot of the function k0 = f(nl, n2), it follows, with nl as-
sumed, that the greater n 2 -- that is, the slower the time characteristic of

the open system increases -- the greater the amplification it is possible

ko

5o

20

_0

5

sin 3z

ko=(n2 -nl)" i*n1*n2

sin n---z-2_]7
l+nl _.n 2

Fig. 25. Plots of the function k0 = S (nl, n2)

to apply. Of course, we are able to influence the speed of the increase of

the time characteristic x2(n, 0) by changing the width 7 of the rectangular
pulses generated by the sampler.

The method presented for determining stability does not require any
preliminary calculations.

3.2.4. Stability conditions :for an astatic sampled-data

control system with a typical characteristic

Below, we shall discuss the stability of an astatic sampled-data con-
trol system. The analysis performed is based on the assumption that the

waveform of the time characteristic x2(n, 0) (response to a unit-step exci-
tation) has the shape indicated in Fig. 26a. Such a characteristic can be

obtained experimentally, or can be determined in a simple manner by
the analytical-graphical method.

Note, that, as regards astatic systems, the stability of a system
depends only on the plot of the characteristic x2(n, _) at the moments
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n = 0, 1, 2,... and e ---- 0, -- that is, the plot of the characteristic x2(n, 0).

The behavior of the characteristic x2(n, _) between the points n = 0, 1, 2,

.... has absolutely no bearing on the stability of the system. Thus the

method presented may be used for a relatively large class of astatic

sampled-data control systems encountered in practice.
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.......... •"0
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Fig. 26. Typical time charateristic of an open astatic sampled-
data control system (a), and the simplified characteristic (b)

In our considerations, we shall replace the characteristic x2(n, O)

(Fig. 26a) by a simplified characteristic in the form of a straight line

(Fig. 26b); we shall then assume that

x 2(n,0)= 10; n<n o
I k (n -- no);

Since we have

n_no,

there will be

and

(140)

z (141)
_cIn} = (z - i)v

Z

.C {x2 (n, 0)} = k (z-- 1)2 z-'o

z -- 1 C {xe(n,0)}= k z-n°
K*(z, 0)= z_ z-- 1

(142) '

The frequency characteristic of an open control system (correspond-

ing to the moments e = 0) will be obtained by substituting for the dis-

placement operator z the function e j_

e-io, no
K* (e1% 0) = k ei_ 1 (143)
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Similarly as in the preceding chapter, the stability limit will be
determined from the conditions

_ (a) c_ K* (e J_, 0) = -- 1,. (144)

(b) g,n K* (ej_, 0) ----0

Taking into consideration (143), we shall obtain

e-J_n° I =;}_e K* (eJ% 0) = ':_e k ej_-_j

k

= (cos_ -- 1) e + sine_ [c°s_n°(c°s_ -- 1) -- sin_n0sin_],

e_J_no __,,_ K* (ei_, 0) _- D,,, k ej_ 1j

k [cos _n o sin _ + sin _n o (cos _ -- 1)]
= -- (cos_ -- 1)e q-. sin e

The conditions (a) and (b) lead then to the following equalities (c)

and (d)

(c) k [sin _ sin _n 0 -- (cos _ -- 1) cos _ n 0] = (cos _ - 1)e + sin e _ ; (145)

(d) sin _. cos _no + (cos _ -- 1) sin _n 0 ---- 0.

After considerable elementary trigonometric

shall arrive at a simpler equation _ namely

(c') ksin(_n0+2)= 2sin 2,

transformations, we

(146)

(d') cos (_no + 2) = 0

These equations will be solved with respect to the unknown _ and k.

From (d') it follows that

_n0 + T = T + v_

where _ is integral number. Hence

I +2v

= _ 1 + 2n 0 n

Substitung _, into Equation (c'), we shall then find the unknown k

2 sin _

1 + 2_ _ (147)
k=k,= 2 =(-- 1)'2sin l÷2n-o "2

sin _no + _-
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It can easily be shown that in this case also, the smallest non-nega-

tive value of k_ will be obtained for the fundamental component of the

control process -- that is, for v = 0. The greatest adsmissible inclination'

of the time characteristic x2(n, 0) of an open control system is then k0

1
ko = 2 sin • -- (148)

1 -F 2n0 2

The function k0 = f(no) is shown in Fig. 27. From the plot of this

function, we conclude that the greatest admissible inclination of the time

characteristic of an open sampled-data control system decreases with

increase in no -- that is, with increase in the delay introduced by the

system.

l ka _ -9-in ¢ :_

2_ _' 2T_17

_ _ Instob_htq roqlon

5tobihttJ reqlon _.

o i i i i t _ r B
al 0,5 _, 2 5 fo 20 50 0o

Fig. 27. Plot of the function k0 = f (no), determining the

greatest admissible amplification in the feedback loop

of an astatic sampled-data control system

The method presented for determining stability is convenient pri-

marily when the time characteristic x2(n, 0) of an open system is deter-

mined experimentally. If, for some reason, experimental determination

of the above characteristic is impossible, the characteristic can be calcu-

lated analytically -- for example by means of the method presented in

Part 2. Then we use the equation of a sampled-data system

L_{x2 (n, 0)} = gl (z, 0) L' {xl (n)}

and we assume that

Ulxl(n)}---- L'{1] = z
z_l _]

The characteristic x2(n, 0) of an open sampled-data control system

may also be determined by the graphical-analytical method; namely, we

may add graphically the responses hy (t) = h(t) -F- h(t -- 7T) of the linear
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part of the system to rectangular pulses of width ?T, which are displaced
with respect one to another by the period T.

It is clear that an influence on the inclination of the characteristic

x2(n, 0) is exerted by changing the width of the rectangular pulses -- that

is, by a change in the parameter ?. It can easily be seen that the inclina-

tion of x2(n, 0) decreases with a decrease in the parameter y.

Simple astatic systems and their time characteristics x2(t-), x2(n, O)
are presented in Fig. 28 and 29.

Note that in the case of the system from Fig. 28, between the incli-

nation k_ of the characteristic x2(n , 0) and the width of the pulses, a simple
relation holds

G

b

x,_),x2(..o)

,/
_k=Z

/ 1 ', r,

_f l t !
_ / t I I...... -,F : ; I

T I _ i I
i _#i I ' I ' D-

O , 'l2 'b_ 14 I' I_
I I I

I I I I ! I
I I I '1 I I I I I I

 'nhshhn'   hnnnII I _' ]ItMMHt=

0 _ 2 3 4 5 6 0 1 2 3 4 5 6 7

b

i

0 I1 IZ 13 14 15 6 l )

t---÷
l=

,-=÷

Fig. 28. Time characteristic of an astatic Fig. 29. Time characteristic of an astatic

system containing a delay element system containing an inertial element

Using this formula, we can find the greatest admissible width of

pulses for a system with the characteristic shown in Fig. 28. The control

system of gas pressure [4] may serve as an example for a system with
such a characteristic. An example for a system with the characteristic

shown in Fig. 29 may be the temperature control system [1].
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4. CRITERIA FOR THE QUALITY EVALUATION OF THE SAMPLED-DATA
CONTROL PROCESS

4.1. Conditions of finite transients

An interesting property of sampled-data feedback systems is the

possibility of obtaining a finite time for the passing of a time charac-

teristic into a steady state. As we know, linear continuous-data systems

do not possess this property. By way of ilustration, let us consider the

pulse-transfer function of a sampled-data feedback system

Ki (e', _)g_ (es, _) *
K*. (e _, e)

_" = l+Kt(eS,0) -- _o*(eO '

where K* is the transfer function of an open-loop feedback system.

If we assume that the system contains only lumped elements, then

K* will be a rational function, that is

M* (e0
K7 (e s, 0) -- D* (e0

where M* and D* are polynomials of e s.

The function Cp* will then also be a rational function, since we have

M* (eO D* (eO + M* (eS) : G* (eO
_ * (eO : 1 .+-

D* (e0 D* (e0 D* (e0

The stability of a feedback system evidently depends on the roots

of the equation

G* (e0 =/3* (e0 + M* (e0 = 0

If the system under consideration is stable, then all the roots s, of

the above equation have negative real parts. Let us assume that

:minl' )_es,] (149)

The number } is called the degree of stabilityof a system. It turns

out that in the case of sampled-data systems, we can attain an infinite

degree of stability-- that is, with suitable assumptions we can realize

a sampled-data system for which } ----_.

In fact, if we assume that the function G*(e s) is a polynomial of

the order l,that is

then for the case

we shall obtain

G* (e0 = ale _l + at-, e _e-1) + ... + ao

a 0: a, = ... -- al_ 1 =0; a I=/=0 (150)

G* (e') -----D* (e0 + M* (e0 = at e_t
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and
•

Since the transfer function K* of an open control system is the

• quotient of the polynomials M* and D* -- that is

t t I

M* b0 + ble s + ... + bll e ul
t t IK*=-D. -- a0+ale _+...+ale _1 ; ll_l

then the condition (150) imposes the following conditions on the coef-

ficients of the transfer function K* of an open control system
t ! ! ! ! !

a0= --b0; al------bl ...al-l=--bl-1 / (151)
I

and al =/=b;. /

Satisfying these conditions, we shall obtain

G* = M* + D* ----(a; + b'l)e sl ,

thus, in fact, for this case

= min]_e s,I = oo

We shall prove now the following.

Property. In the case of an infinite degree of stability, the time

characteristic of a closed sampled-data control system has a finite tran-

sient•

Proof. In fact, since the pulse transfer function of a closed control

system is a function taking the form

K_,i (es, _) = b° (e) + b 1 (e) es + ... + bk (e) esk
ao + a_e s + ... + ate u , l_k

then with the assumption that

ao = al = ... =- at-1 = O; a l :#: O

we shall obtain

and

K* 1_,i (e_, e) = e-_ [b0 (_) + bl (e) e s + ... ÷ bk (e) esk] =
al

----1 [b° (e) e-sl + bl (e) e- (1-1)s + ... + bk (e) e-s¢-k)] ;
al

Z--k_O

-----__ _,i(e_, _) ----
_, a I s

Since generally we have

• _e-_ {0; t<,_

bk (e)
-- + ... + --

al • ----e-(l-k)Ss I
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then the function x2_, e] for t_ l is a steady-state function. Quod erat
demonstrandum.

4.2. Analogies with integral criteria

A suitable choice of parameters for a sampled-data system such

that the control process will have a finite period of duration is not always

feasible. In order to satisfy this condition, it is most often necessary to

apply special correction systems or differentiating elements, which are

difficult as regards realization; moreover, they raise the cost of equipment

and are not always desirable in a system. In many cases, the application

of special correction systems, which makes the structure of the system

more complicated, would not be desirable or justified. Thus the question

often arises as to what, so that the "best" control process be obtained_

should be the parameters of a system with a structure given in advance.
It is clear that the use of the term "the best" "would make no sense

without a precise definition of this term. Accordingly, we make use of

suitably defined quality criteria of the control process. These criteria

are analogous to the integral criteria used in the problems of continuous-

-data control. Namely, we use the expressions

co

I, = _ {Xe(n) -- Xe (c_){ (152a)
n=0

oo

1,, = _ n Ix2 (n) -- x 2 (oc){ (152b)
n=0

12 -_ _ [X2 (n) -- X2 (oc)] e (152C)
n=0

where x_(n) is a sequence formed from the functions of the output signal

of the system.

It is worth noting that the expression (152a) -- that is the quantity Ii,

is the measure of the field contained between the step function deter-

mined by the sequence x2(n), and the steady-state value x2(_) of the
function x2.

The use of the expressions 11, and 11, n is convenient in calculus,

only when the terms of the sequence

x 2 (n) -- x2 (o0)

have the same sign; for this case the relation

Ix2 (n) -- x2 (_)] -_ ± (xe (n) -- x2 (c_))

holds, and in the definition formulae (152a) and (152b), we may drop the

sign of the modulus. However, when x2(n) approaches in an oscillative
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manner the asymptoticvalue x2(oo) the sign of the modulus cannot be

dropped, and therefore the calculation of the expression I1 and I1, n be-

comes much more complicated. Thus it is better in this case, to use the

expression Is.

The quantities I1, Ii,n and I2 are calculated directly from the pulse-

transfer function K*(e s, 0) of the closed system. Namely, taking into

consideration the relation

e s

,#2 {x2 It-] -- x2 [co]} = [K* (e s, 0) -- g*(1, 0)] _

and Formula (25), we obtain for the quantity I1 the following expression

e $

11 ----lim [K* (e s, 0) -- K* (1, 0] e s __
s->0

(153)

In a similar way (using Formula 24), we shall obtain

II,n -_ -- lira d [K* (e s, 0) K* (i,0)] - es
s_o de s es -- 1"

(154)

The quantity Is can also be calculated directly from knowledge of the

transfer function of a closed-loop sampled-data feedback system. The

deduction of a suitable formula relating the quantity Is to the transfer

function of the system involves in this case somewhat more serious dif-

ficulties. In a particular case, in which

[K* (es, 0) -- K* (1, 0)]
e s d2 e2s _- dl es

e s -- 1 a 2 e 2s -I- a I e s -}- ao

the quantity I2 are determined from the formula

(d_ + d_)(a2 + a0) -- 2dl de a_
I2z

(a2 -- ao)[(ae -_ ao) "_-- a_]
(155)

However, in the case in which

[g* (es, 0) -- K* (1, 0)1

we use a simpler formula -- namely,

es dl e s

e -- 1 a_ es _- ao

i2 _ d_ (155a)
a_ -- a_

For the deducting of the formulae given above, the reader is referred

to the paper [1].
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5. EXAMPLE OF DESIGNING A SAMPLED-DATA CONTROL SYSTEM

in order to design a sampled-data control system, a number of opera-

tions must be performed -- namely:

(1) "to translate" the actual system into an equivalent block dia-
gram, to assume a suitable structure of the controller, and to determine

the transfer function K(s) of the particular elements of the control sys-

tem;

r_*Ce_ _) of the open(2) to determine the pulse transfer functions ___, ,
control system;

(3) to investigate the stability of the system;

(4) to determine the optimal parameters of the controller;

(5) to find the time characteristic of the open control system.

The manner of designing a sampled-data control system is illus-

trated by the following example.

Example. Figure 30 represents a diagram of a typical sampled-data con-

trol system for temperature. This system possesses, in addition to a con-

trolled system, a sampler, a performing element, and a measurement

< "_2 El

Ili!i!!/fiilil!!i_!lllilil]]iiLii

, T
-eo

Fig. 30. Typical sampled-data control system for temperature

(1) measuring element, (2) measurement bridge, (3) galvano-

meter frame, (4) sampler handle, (5) resistor of the sampler,

(6) servomotor, (7) controlling valve, (8) unit regulating

temperature

element. A measurement element is the servomotor which changes the

flow of heat by means of changes in the position of the valve 7.

A measurement element is the resistor 1, the resistance of which depends
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on temperature and which constitutes one of the arms of the measure-

ment bridge 2. The desired temperature is fixed by means of the poten-

• tiometer 8, situated in the bridge loop.

The output voltage of the bridge, which is of course proportional to

the error -- that is, to the difference between the given temperature

and the temperature subjected to control -- is measured by means of the

galvanometer 3.

Owing to the presence of a sampler, the servomotor and thus also

the valve controlling the flow of heat, works in a non-continuous man-

ner. The sampler, as well as the pulse action, acts at the same time as

an amplifier.

Let us pass now to the performance of the first of the operations

listed above which are connected with the design of a sampled-data con-

trol system•

Determination of the block diagram and the transfer functions

for the particular elements of the control system

The dynamic of a system may be determined by means of the opera-

tor transfer functions of the particular elements• The servomotor may --

as we know -- be considered approximately as an integrating element;

that is, the transfer function of the servomotor can be defined by the

formula

1
Ki(s ) --_

T_ s

where Ts is a constant of the servomotor.

Fig. 31. Block diagram of a control system for tempera-
ture

The transfer function of the controlled system, which is for example

a furnace or a thermostat, may approximately be considered as a first-

order element; that is to say, for the controlled system we may assume

that

1
K 2 (s) = ,._-

lOS

where To is a time constant of the system.
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For the measurement element -- which approximately does not

contain inertial elements -- we may assume that

K 3 (s) ----k 3

The block diagram, in accordance with the above considerations,

takes the form as given in Fig. 31.

Determination of the pulse-transfer function of an open

control system

The transfer function K(s) of the linear part of an open control

system -- that is, of a system constituting a series connection of the ele-

ments K1, K2 and K3, is the product

k3 (156)
K (s) = K 1 (s) K s (s) K s (s) = Ts s (T o s + 1)

The linear part of an open control system is then an integral-inertial

element. Using Table 1 (See Appendix), we immediately find the pulse-

transfer functions corresponding to the expression (156). Namely, we

have

_s ( _ _ es- e-_(l-_, )_ 7 _ _{_ko e_-- e-_ e-_ (157a)K_(e s,_)= --k 0 _-k 0_ e-t- eS_ 1

for 0_e<r

where

eS _s eS_ k 0 (ePr e-_ (157b)KH(e ,_) ---- ko/_s _' e s _ 1 -- 1) e_ e-_

for 7_<i

T T

k 0 ----k. ks, and k is the amplification of the sampler, _ ---- T-_' _s ---

and T is the period of rectangular pulses generated by the sampler.

Investigation of the stability of the system

We investigate the stability of the system in terms of frequency

criteria. Since the stability of a system is entirely dependent on the

behavior of the system at the moments _ ---- 0, then in order to investigate

stability, we determine the quantity K_}(e _, 0) from Formula (157a). We

have

K_ (e s, 0) _- -- k0/?_ 7 __ k0/?s e_ -- e_°-_) (158)
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The pulse frequencycharacteristiccorrespondingto the case_= 0
then takes the form

KT(el_,O)=k o_s -- _--- • el_--e-p + e� _-1

It may be noted that the first in parenthesis of Formula (159) --
that is, the expression

ePz- 1 e-_

i_ e j_" _ e-/_

-- constitutes for 0 _ _ _ the equation of the semicircle situated in

the upper semiplane (Fig. 32), while the second term- that is r
ej_ -- 1

represents for 0__ the semiaxis passing through the point

7

A necessary and sufficient condition for the system under consideration

to be stable after the feedback loop has been closed, is the requirement

that the Nyquist diagram K*(d% O) shall not contain the point (--1 +jO).

_=0-!

l /8÷{c_J
!

I
/

//
/

s

i • I-

; A (_}
I

I

t

I

I

I

/

f ..........

0.5

I it

t 2 3 4 5 6

Fig. 32. Nyquist diagram K* (e 1_', O) =

= M* (j_o, O) = A* (j_) -{- jB*(_5) of an open

saml_led-data control system

Fig. 33. Time characteristic of a

control system for temperature in

the case in which /_ = 0.5 and

k0_s 7 = 1.61

Determination of the optimal parameters of the controller

In order to determine the optimal parameters of the controller, we
use the formula

i2 = _-I [x_ (n) -- x2 (_)]_
n=O
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where x2 is the unit-step response of the closed control system. We are

taking into consideration the case in which 7 _ 1.

Since

-- es K* e s

Ks(e,O) e_ --1_= 1+ K* e ._-1 _]= . s _ _ .

and

e s

,L_ {x2 It-, 0] -- x2 [_]} : [K_(e "_,0) -- K_(1, 0)] e -- 1 'j :

e 2s -- e-Z e s

-- e2_ ---[(I + e_) -- k0/_?(1 -- e-_)] e _ + e-/_ _l

then in accordance with (155)

(1 + e-2Z)(1 + e-_) -- e-_[1 ÷ e-/; -- k,/_,_ 7 (1 -- e_-_)]

I2 ----(1 -- e-_){(1 __-e=_)2 - [k0/?_? (1 - e-_) -- (1 ÷ e-_)]21

After introducing the denotations

a=2 l+e-z _-i--e-_ =2c°th ; b=k 0_,_?

the expression determining I2 will be written as

4(a -- b) + a "_b 1 a2

12= - 8(a--b) t_ = 2b ÷ 8(a--b)

Calculating the zero value of the derivative Iz with respect to the

parameter b

012 -- 0
Ob

we can then determine the optimal quantity of the product k0/?,y for

which the deviation of the control waveform from the unit-step function

reaches its least value in the sense of the criterion of the squared error.

After elementary calculations, we arrive at

(ko _6s7)opt -- -- 1 + e-Z

Determination of the time characteristic of the closed

control system

The time characteristic of the closed control system is determined

on the basis of the equation

fJ {x_ [t, _]} ---- g *-.,, (e "_,s) k' {x0 It-]}

Namely, if we assume that

x 0 It-] = 1 (t)
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then

and

J

m es
._ {X0 It'll e s _ 1 _l

e s P* (e s, e) e _

]2 {x2[t,_]}= K_,i(e_,_) eS :1_] - Q.(e s) " e_- 1 _]

where the functions P* and Q* are polynomials of the variable e s.

By expanding the rational function into simple fractions, and reading

from tables the results of the particular operations, we shall obtain

the function x2[t-, e] determining the time characteristic of the closed

control system. The plot of the function x_[_, _] for the case fl = 0,5 and

koflsy = 1,61 is given in Fig. 33.
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ON SYNTHESIS OF S_MPLED -- DATA CONTROL

SYSTEMS 1)

 oll '
A sythesis method of sampled-data control systems on the basis of the fre-

quency pattern in presented in the present paper. The method makes use of the

properties of frequency and time characteristics concerning a sampled-data contr_pl_
system as discussed and established herein. J

1. INTRODUCTION

A control system is a negative feedback system. In such a system

two essential elements can be distinguished -- a controlled system and
a controller.

An essential characteristic of a sampled-data control system is the
presence of a sampler in the controller; the sampler transforms the input

signal -- usually a continuous function -- into a signal in the form of
sequence of rectangular pulses (Fig. 1).

Depending on the design of the sampler, we distinguish several types
of sampled-data control systems. In our considerations, we shall confine

ourselves to the investigation of systems with samplers transforming the

input signal into a signal in the form of a sequence of pulses with mod-
ulated amplitudes or with a modulated width of pulses (Fig. 2).

The properties of the first type of sampler can be uniquely deter-
mined by means of three independent parameters:

T -- period of occurrence of pulses,
k -- amplification,

d
7 -- T relative width of pulses,

where d is the width of pulses measured in seconds.

The properties of the second type of sampler are determined by
k -- amplitude of generated pulses,

T -- period of occurrence of pulses,

y. -- width coefficient of pulses.

The sampled-data control systems of the first and the second type
are classified in the category of dynamical systems, since certain para-

meters (amplitude or width of pulses) of the signal correcting the con-

_) Archiwum Automatyki i Telemcchaniki (Vol. II, No. 1-2, 1957, pp. 95--120)
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trolled quantity are linearly dependent on the value of the actuating

signal.

Sample-data control systems are of particular importance to the

control of slowly changing processes, such as the control of pressure and

temperature in boilers, temperature in indu_rial furnaces, etc.

Power _ll

element

I
" = ControlledelementI

Controlelement

=_ _ . _-_ Auziliarq

PQr_ctinq LT je'ement

Sampler Series correcting Estoblishinq
eiement element e(ement

Fig. 1. Block diagram of a sampled-data control system

Moreover, such systems are widely applied in telemetering and re-
mote control.

The methods of investigating control systems are usually divided

into two groups -- analysis methods and synthesis methods.

Synthesis methods aim at determining the optimum structure and

characteristics of the individual elements of the control system in terms

of its properties given in advance.

Analysis methods set out to determine the properties of a system

which are of interest to us, the structure and characteristics of elements

being assumed in advance.

In the development of analysis methods of sampled-data control

systems, three stages may, in principle, be distinguished. First, such

systems were investigated by the graphical-analytical method, then by

a method which might be called a classical method based on the theory

of difference equations, and finally by the method based on the so-called

discrete (summing) Laplace transformation.

The last of the above mentioned methods, which was presented by

Tsypkin [1] is particularly useful in engineering applications, since it

gives theoretical bases common to a wide class of sampled-data control

systems, and moreover, it shows promising possibilities of further de-

velopment.This method employs a number of notions well known from
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4

the theory of dynamical systems -- such as, for example, the notions of

frequency and time characteristics, transfer function etc. -- which fact

makes it still more valuable.

l=",...'-',,,,., _'{l)=xlx(d

if-P",,

Fig. 2. Operation principle of a sampler (a) type 1, (b) type 2

In the opinion of the present author the application to the investi-

gation of sampled-data control systems of a special mathematical appara-

tus, such as the discrete Laplace transformation, is not justified meth-

odologically. In the present paper, therefore, the properties of sampled-

-data control systems are determined on the basis of the well-known and

more general integral Laplace transformation. Owing to the application

of the integral Laplace transformation and to the direct introduction of

the definitions concerning the transfer function and the frequency char-

acteristic of a sampled-data control system by the formulae

K* (e_,_) d_ _2{x,[t, 0]} '

we achieve a greater simplicity of method and bring it closer to the

well-known methods of investigating dynamical systems.

The present paper is concerned with the problem of synthesis of

sampled-data control systems; the methods of analysis of sampled-data

control systems have recently been considerably advanced, while research

in the methods of synthesis have so far been almost entirely neglected.

The object of the paper is to investigate the basic properties of

frequency and time characteristics of sampled-data control systems from

the point of view of the possibility of utilizing those properties in the

problems of synthesis. It should be emphasized that no well-known pro-
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perties of the frequency characteristics of systems with continuous action

r_hould, in the domain of sampled-data control systems, be assumed by

analogy as valid -- unless corresponding proofs are supplied, since such

a procedure would evidently be erroneous and inadmissible. This follows

from the fact that, for example, the frequency characteristics of sampled-

-data control systems constitute notions more general in character than

those of the frequency characteristics of systems with continuous action.

Moreover, it is impossible to establish a corresponding isomorphism

between the characteristics of the two types of systems. Consequently,

all the conclusions stated in this paper are supported by appropriate

proofs. Attention is directed to the fact that it is not always the case that

the properties of the characteristics of sampled-data control systems

established in this paper are compatible with the corresponding charac-

teristics of systems with continuous action.

2. CHARACTERISTICS OF SAMPLED-DATA CONTROL SYSTEMS

After splitting a feedback path in a sampled-data control system we

obtain a sampled-data system of the form shown in Fig. 3. This system

consists of two elements, in a series connection -- a linear element and

a sampler.

0

Fig. 3. Sampled-data system

It is well-known from the theory of dynamical systems that the

transmission properties of a linear system can always be uniquely deter-

mined by means of the function K(s) of the complex variable s

K (s) -- _{xl (t)}' (1)

where x_ and xl are, respectively, the input and the output signal of the

system under consideration, and o_ denotes the integral Laplace trans-
formation.

The question now arises as to whether it is possible in a similar

manner to determine the capability of transmitting signals by a sampled-

-data dynamical system with the aid of a certain function. The answer

is positive.
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: In order to explain this let us first observe that any continuous func-

tion of the real variable t can be uniquely determined by a set of step

functions dependent on a certain real parameter. In fact, if we take into

- t
consideration, for example, the function f(t), where t-=_ is a real var-

iable, then the set of step functions f[t, e] dependent on the parameter

E ( [0, 1] and made up of the values of the function f(_, uniquely deter-

mines the function f(t-) (Fig. 4). This can be expressed by the formula'

f(t-)[=] fit, el; 0 _< _ < 1. (2)

The pulse transfer function, which determines the capability of the

sample-data system of transmitting signals, is defined as

c'{x.,It, d} .
K* (e '_,_) d_ - t_l t_J_

:::)

C f "/+E 2 2÷_ 3.C 4 4÷_ 5

Fig. 4. Continuous function I(t) determined by

the set of step functions f[t-,e]

where x2[t, e] is a step function dependent on the real parameter e, and

determining the output signal x2(t) of the sampled-data system, xl_) is

a step function made up of the function xl(t) of the input signal of the

sampled-data system.

It can be shown that depending on the value of the parameter s, the

function K* may be expressed by two different analytical formulae

and

K_*(e ', e) for the interval 0 _< e < 7

K_(e s, e) for the interval 7 _< e < 1.

The function K*(e s, e) has a simple physical interpretation.

Now we have to prove that K*(e *, e) is the Laplace transformation of

1
the function hy[t, ,] divided by s (1 -- e-*), where hy_, e] is the function
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of the output signal,whenthe linear part of the sampled-datasystemis
actuatedby anexcitationin the form of a rectangularpulsehavingwidth
yTandamplitudeequalto unity (Fig.(5)2_

Fig.5.Responseof a systemto anexcitationin theform
of a rectangularpulse

Thuswehave

where

K* (e s, s) = 5){h_' [t, el} , (4)

1
= s 0 - e-s).

We call frequency characteristic of a sampled-data system the diagram
of the complex function

b5 = _oT is called the dimensionless angular frequency.

An interesting property of the characteristic M*(j_, s) is its depend-

ence on the real parameter s. Each value of the parameter s corresponds

in general to a different frequency characteristic.

In view of the above definition we have

M* (j_, _) = K* (ei"', _), (6)

-- that is, the frequency characteristic of a sampled-data system is obtain-

ed directly from the pulse transfer function K* by substituting the

variable j_. for the complex variable s.

It can be proved that the frequency pattern determined by Eq. (5)

in the case of a stable sampled-data system satisfies the relation

M* (j_, g) : X2steady.-_[_...._] , (7)
x_ It]

2) It is assumed that the sampler and the linear element are what are called
"isolated" systems.

12" 4
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in which x2 _teady_, e] is a steady-state component of the output signal

x2[t, e], actuated by the harmonic excitation xl[t] ---- e j_n.

Note that Tsypkin [1] determines the frequency characteristic of

a sampled-data system by Formula (7). The pattern so determined is no"

longer valid in the case of astatical sampled-data systems which are in

common use in sampled-data equipments.

The frequency characteristic of a sampled-data system, as a complex

function, may be represented in the form of the sum of its components

M* (j_, e) ----A* (_, e) -t- i B* (_, e) (8)

or in the exponential form

M* (i_, e) ----M_ (_, _) ei_* (_, e). (9)

The functions A* and B* are called a real and an imaginary component

of the frequency characteristic, and M_ and q_*, respectively, are referred

to as the amplitude characteristic and the phase characteristic.

A time characteristic of a sampled-data system is called the plot of

the function of the output signal actuated by an excitation by means of

a unit function (Fig. 6).

l
, Z'(Ti ! ', i
I I I I I I I I i

#r

Fig. 6. Explanation for the time characteristic of a sampled-data
system

3. PROPERTIES OF SAMPLED-DATA SYSTEM CHARACTERISTICS

In the paper by Tsypkin [1] the following relation is given between

the frequency and the time characteristic of a sampled-data system

/lb[n-- 1,_] -----_- A*(_,s)cos_n.d_; n_O. (10)

0

This formula determines the relation between the functions b and A*

in a complicated form, and is therefore inconvenient in applications.

Accordingly, Eq. (10) will be transformed so that it shall be reduced to

a form more suitable for practical use.

If, in Formula (10) we take into consideration the obvious equality
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thenweobtain

andhence

A

/
= 2 cos _ (n + 1),

Ab [n, e] = 1 /f
0 A* (_, e) A [ sin _-

1
b [n, e] = -- | A* (_, _)

J sin _
0 2

d_

d_+ _.

Since for A* = 0 there must be b[n, e] = 0, then 2 = 0 and

=
b[n,e] =--i _ A*(_,e) a_., In_O

o sin2 I
!

(11)

This formula corresponds to the well-known formula

1 ;p (co) sincotdco;h (t) = _ o_
0

t>io

determining the relation between the real component P(o_) of the fre-

quency characteristic and the time characteristic h(t) in the case of sys-

tems with continuous action.

A'(0).

A'(EJ)

EJ
Ii

, b (n)

0 0 0 0

0 0 o 0

0 o o I?

0 0
0

Fig. 7. Characteristics A* (_o) and b(n) satisfying the Pro-

perty 1
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For engineering applications, it is very important to investigate

whether certain properties of the function bin, s] which are of interest

to us can be determined from the character of the plot of the function

A*(_, _). To this end, we shall now prove certain properties specified
below.

Property 1

If in the interval _ e[0, n], A*(_ 0) _ 0 and in addition

A*(0, 0) _ A*(_, 0) (Fig. 7), then the inequality

b (0) _ b (_) 3) (12)
holds.

Proof. In fact, from Formula (11) we have

St

0

If then we assume that A*(_)_ 0 and A*(_)_ A*(O) for _ e[O, _], we
shall obtain

1 ('_ .1 A* "_
b(0)_< ,- ] A*(0) d_---- (0)_ ----A*(0).

• _ i0
0

However, since

then we shall have

A* (0) ---- b (oc)

b (0) _< b (_c)

quod erat demonstrandum.

Property 2

If A*(_) in the interval _ e[0, :z] is a positive function monotonically
decreasing (Fig. 8), then the inequality

b (n) _ 1.22b (c_)

holds.

Proof. Let us express the integral (11) as the sum of integrals

(13)

sm_-(2n 4- 1)

J A*(_)-
o sin

s) For simplicity, the functions A*(_, 0) and b In, 0] will further be denoted
by A*(_) and b (n), respectively.
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2_

_-_P"-I(_+I)2.+--i sin2 (2n ÷ 1)
= , | A*(_)) .... d_+

_.._ d sin o_
,=o 2,_ 2

"2,,+/

÷ j, sin (2n+1)dE = ao --A* (_)
2_ sin _-

n 2n$i

al ÷ a__ -- ... ÷

÷ (-- 1) n-1 an_ 1 ÷ (-- 1)" a R ; n = O, 1, 2,...,

whereav_0;v = 0,1,2,. .....

.4"(45)

t22--,

! -,,

"---d co
yf

, t_(n)

_///L J/J_//__//__/Z///Z 2 "Z/Z///Z/Z/Z//_/_//J_/_
o

o o o °_o

---o ....... _ -5 .....

o

o 0

Fig. 8. Characteristics satisfying the Property 2

1
Since in the interval _ c[0, ,_]the function _ is a positive func-

sin --
2

tion monotonically decreasing, and by the assumption A*(_) is also a posi-

tive function monotonically decreasing, we have

%> al > %... > an-t _ aR.

Hence we conclude that

sin 2 (2n ÷ 1)

A* (_) d_
• sin _
o 2

_n.+1 sin _- (2n + 1)

i A* (_) - d_
sin 2

2g

2,+1 sm_-(2n+l)

A* (o) o_
sin --

o 2

Thus

b (n) _ b (c_). q_(n),
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where

2n+1sin-_ (2n+ 1)

f
sin _

0 2

It can easily be verified that the function _(n) is a positive function mono-

tonically decreasing. Moreover, we have

and
q_ (0) = 2

2
_ . 2

If sin3- _q_(1): . _ d_:1.2179 ..... _1.22.
sin --

0 2

Since it follows from the Property 1 that the inequality

b (0) < b (oo),

must also be satisfied then

b (n) _ 1.22b (oo)

quod erat demonstradum.

Property 3

If A*(_) is in the interval _ e[0, _] a monotonically decreasing func-

tion (not entirely positive) (Fig. 9), then the following inequality holds:

b (n) A* (n) (14)
1.22 -- 0.22 A,(0 ) .b(oo)

Proof. Let us discuss the formula

•

1 _ sin- 2 (2n+ 1)

b (n) : -_- J A* (_) ..... d_.t_
sin --

0 2

The function A*(_) can always be represented as the sum of two func-

tions AI*(_ ) and A*(_),

A* (_) : A T (_) + A* (n),

where A_((_) is in the interval _ e[0, n] a positive function monotonically

decreasing• Therefore

sin _ (2n + 1)
b(n): _1 o [AT(_)÷A*(_)] sin-- _ _ d_:

2
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__; sm-_-(2n -_ 1)-_ A_ (_) _ d_ + A* (_)
sin --

0 2

and, since A_(_) is a positive function monotonically decreasing

b (n)_ 1.22A_ (0)_-A* (_)_- 1.22 [A* (0)-- .4*(_)]_-A* (_)=

-- 1.22A* (0)--0.22 A* (_).

Hence

b (n) A* (_)

b(cx_) _ 1.22 - 0.22 A_(0 )

quod erat demonstrandum.

A'_,,AYCa) I A'(_)

oI L_
A'(_)[ .............

Fig. 9. Characteristics satisfying the Property 3

For estimating the overshoot _ we thus have the following formula

oO/o = b(n)b(cx_)b(ee) 100°/o_ < 0,22--0,22 .4"(t)) 100% "

A* (_) .o A* (Jr)
If for instance _A(0) = 0.3, then o _ 16%, and ,.i.4,(_)) = 0.3, then o _ 29%.

Property 4

If A*(_) in the interval _c[0, _1] is a positive function monotonically

increasing, whereas in the interval _ e[_l ,_] -- it is a positive function

monotonically decreasing (Fig. 10), then we have

b (n) A_m_

b(_j < 1.22 A_(0 ) . (15)

Proof. The frequency pattern A*(_) can be represented as the difference

of the two monotonically decreasing patterns (Fig. I0)

A* (_) = AT (_) -- A_ (_),
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=- Ama×.where A_ (0) * Therefore

05

1 _' sin (2n + 1) 1 ; sin-2-(2n + 1)b (n) = _ .t A_ (05) 05 d05 -- _ A_ (05) _
o sin 2 o sin oJ2

and, since A_ (05) _ 0,

1 f

b (n) < _- / A_ (05)
I/
o

sin 2 (2n + 1)

05
sin --

2

d05.

Hence by virtue of the property 2

b (n) < 1.22m,_

and finally

quod erat demonstrandum.

b (n) A_m,x

b-(_) < 1.22 tI*(0)

A_)

yf

A'(£_)

c5

d05,

Fig. 10. Characteristic satisfying the Property 4

Hence the following conclusion may be arrived at: if the frequency pat-

tern A*(05) has a maximum equal to Am, x , then the overshoot o has

Am.x

a smaller value than 1.22 A*(0) -- 1 and, consequently, the following re-

lation holds

If, for example

A_m,X )o% < 1.22 A*(0) -- 1 "100°/o.

A_ max

= 1.25,
A*(O)
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then the overshootcannotexceed53e/0(in this case,for systemswith
continuouscontrolweshouldhave@/o < 48°/0).

Property 5

If A*(_) in the interval _o_[o, ,_] has a plot containing one maximum,

as indicated at Fig. 11 (and is a function not necessarily positive), then

we have

b (n) 1.22Am*,x -- 0.22A* (_)
l_(o¢J) < - -/_* (0) .... (16)

Q

Amox

I

i C)

A'(_)

B,

Fig. 11. Characteristic satisfying the Property 5

Proof. The function A_(@, which was discussed in connection with the

Property 4, can be represented as the sum of two functions A*(5) and

A*@) in a manner identical with that in the proof for the Property 3.

Accordingly, in accordance with Formula (59) we shall write

sin _- (2n ÷ 1)

b(n)< 1. I"[A_(@_ p A*(n)]
' sin --
0 2

d_ _ 1.22A_ (0) -_ A* (70 =

= 1.22 [A_(0)- A*@)] + A*(_)= 1.22A_(0)- 0.22A*(x).

Now, taking into consideration that

we shall finally obtain

and

= AmaxA_(O) *

b (n) < 1.22A*m,x -- 0.22A* (n)

1.22Am,x -- 0.22A* (_)

A* (o) , quod erat demonstradum.
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Theovershootfor the pattern underconsiderationmay therefort be
estihatedin terms of the following equation

( A_ ..... A*(_) )0O/o < 1.22A,(o ) -- u.z_A,(o ) -- 1 100%
(17)

Property 6

If A*(_) is a positive function monotonically decreasing, then the

following inequality holds

Ab(n-- 1)<2 b(_). (18)
Y_ n

Proof. Let us take into consideration the formula

2 t A*_cosn_d_.Ab(n-- 1)= ;z
0

Expanding the integral appearing on the right-hand side of the above

formula into the sum of corresponding integrals, we obtain

where

n-2

Ab (n -- 1) = e + _ (-- 1)TM a k + (-- 1) "-1 a,_l,

7_

2n

e = 2 f A*(_)cos n_d_,
0

2k+3

2n

12f n_d_ak = A* (_) cos ;

2k+l

2n

k=0,1,2,...,n--2,

an_ 1 _ 2 f A* (_) cos n__)d_ l[] °

2n--1

2n

If A*(_) is a positive function monotonically decreasing, we have the

inequalities

ao_al _a2_ .. . _a_._2_a_...-i _ O.
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Accordingly

2n

2fAb(n -- 1) _ e = -- A* (_) cos n_d_. (19)
Y_

0

Now we may notice that owing to the inequality A*(_)_ A*(0)

2n 2n

f A*(_)cosn_d_ < d*(0) f cos n_d_ -----
0 0

= A* (0) sin ru_ ----A* (0) .
0 n

Therefore by virtue of Formula (19), and owing to the inequality A*(0) =

= b(e_), we obtain

Ab (n -- 1)_ 2 b (_x_)_quod erat demonstrandum.

The above formula may also be written as

Ab (n -- 1) 1
< 0.64--. (19a)

b(_) n

Property 7

If A*(_)is in the interval _e[0, _] a positive function possessing a neg-
ative and monotonically increasing derivative (Fig. 12), then the time

characteristic b(n) is a monotonically increasing function, and hence

Ab (n) _ 0. (20)

Proof. Let us consider the Formula

Ab (n -- 1) = _- A* (_) cos _d_.
0

The characteristic b(n) is a monotonically increasing function if

Ab(n--1)_O; n=1,2,...

The frequency characteristic will be reperesented as the sum ot the char-

acteristics A_ (_) having the shape of triangles

A_(_)= A_(0) 1--_ 0_<_k

where

A_ (0) > 0.
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When the number of triangular characteristics tends to infinity, the sum

thereof in the limit will represent the function A*(_).
Hence

A* (_)) _-_ 2 Ak (/_)
k=0

where

Introducing now the following notation

3bk(n-- l) -2 f d; (O)(1- b])cosnb]db5JI O) k

we shall obtain

Abk (n -- 1) = 2A_ (0) (1 -- cos n(ok)
O) k Jtn 2

and

z]b k (n --1)/> 0,

2_
where an equality holds for n = k quod erat demonstrandum.

(o k

If the frequency characteristic A*(_) satisfies the conditions specified

in the section referring to the Property 7, then the sampled-data control

c]I

27

Fig. 12. Characteristic satisfying the

Property 6

system has a monotonical characteristic, that is to say, with no overshoot

and no oscillations.

Now we shall prove that there exist other properties in terms of
which we can determine certain features of the time characteristic

directly from the shape of the frequency characteristic of the linear ele-

ment of the system.

Property 8

If the real component P(_o) of the frequency pattern K(j(o) of the

linear element of a sampled-data system possesses a negative derivative

monotonically incereasing for _o _ 0 (Fig 13), then, with the assumption

of very narrow pulses in relation to the period of generating pulses

(7 _ 1), the characteristic A*(_) in the interval _ c[0, _] is a monotoni-

cally decreasing function.
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Proof.Accordingto Tsypkin, the relationbetweenthe frequencycharac-
teristic M*(_) of a sampled-data system for v _ 1 and the time charac-

teristic of its linear element (with the assumption that lim s K(s) = 0),
S-->oo

is defined by the formula

oo

M* (j6)) -----k _ K [j (6) + 2,xm)],
ITl_oO

where k is a constant dependent on the design of the sampler. Since M*

and K are complex functions, and

M* (j6)) = A* (6)) -Jr iS* (6)),

g (jo_) = P (co) + jQ (co),

then

?o

A* (6)) -----k _1 p (6) + 2xm).
?n_ao

_ PIo)

!

s

Fig. 13. Characteristicwhich

ensuresthe monotonicalfunc-

tion A*(_)

Fig. 14. Characteristic which
does not ensure the mon-

otonical function A*(_)

This series with the above assumptions is a strong-convergent and

differentiable series; we may thus write

A*" (6)) = k [P' (6)) + P' (6) -- 2x) q- P' (6) + 2x) +

+ P' (6) ÷ 4_) +/:' (6) -- 470 + ...]

Since we assume that P(o_) is a monotonically decreasing function
-- that is,

P' (_) _._ 0,

then -- taking into consideration that the function P(_) is even for the

_nterval 6) e[0, _] -- we shall obtain the inequalities

/:' (6)) +/:' (6) -- 2_) _ O,

P' (6) + 2;0 + P' (6) -- 4_) _ O,

/_' [6) + 2,_ (N -- 1)] -- F' (6) -- 2,nN) _ 0.
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Sincetheseinequalitieshold for any natural N, then we have

A* (_) _ 0 for _ ( [0, _] (21)

which means that the real component of the frequency characteristic of

a sampled-data system is in the interval _ e[0, n] and with assumption

that 7 _ 1, it is a monotonically decreasing function, which was to be

proved.
It should be emphasized that the condition requiring that the func-

tion P(w) be monotonical is not sufficient for the function A*(_) to be mo-

notonical in the interval _ e[0, n] (Fig. 14).

Note that the following relations also hold

_o

A* (0) = k[P (0) -b 2 X P (2k_)],
k--0

oo

A* (a) = 2k X P [(2k + 1) a].
k=O

If P(_) decreases rapidly with the increase in frequency, we then have

A* (0) _ _ [P (0) + 2P (2_) _- 2P (4_)], / (22)

A* (_) _ 2k [P (_) -b P (3_) -b P (5z_)]. !

Making use of Formulae (22) on the basis of the Formula

b (n) A* (_)

b(c_)- < 1.22 -- 0.22 -A_O )

we can determine the upper limit of the waveform or the time character-

istic b(n) directly from our knowledge of the plotted function P(_o),
since we have the relation

b (n) _ 1.22-- 0.44 P (_)-I-P (3_)+ P (5_)
b (c_) P (0)+ 2P (2_)+ 2P (4_)

This relation holds in the case in which P'(_)_ 0 for o__0 that is,

when P(_) is a strictly monotonical function decreasing for positive

frequencies co_ 0.

Property 9

If the unit-step-function characteristic h(t) of a linear element is

a monotonically increasing function, the unit-step-function characteristic

b(n) of the sampled-data system is also a monotonically increasing se-

quence (Fig. 15).

Proof. Between the characteristic b(n) of a sampled-data system and the

time characteristic h(t) of the linear element the relation

Ab(n-- 1) ----khr (n) ; n_l
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holds,where

h_,(n) = h (n) - h (n -- 7).

If h(t) is a monotonically increasing function, then

h (n) _ h (n -- _)

for each y e[0, 1]. Therefore

h r (n) _ 0

and

zlb(n-- 1)_0; n_l, (23)

and hence it follows that b(n) in the interval n _ 0 is a monotonically

increasing function. Quod erat demonstrandum.

h(5 "

TT "
_o¢ n-zoq

Fig. 15. Time characteristic h (t) of the linear element of a sampled-data system

Property 10

If in the interval m e[0, oo] the real component of the frequency

characteristic of a sampled-data linear element satisfies the conditions

P (o_)_ O" dR (o_) d 2P (_)
' - d_ _0; de(o _0, (24)

then the time characteristic b(n) of the sampled-data system is a mono-

tonically increasing function.

Proof. The Property 10 follows immediately from the Property 9, since

the time characteristic h(t) is a monotonically increasing function in the

case in which the conditions (24) are satisfield. Quod erat demonstrandum.

4. RELATION BETWEEN THE NYQUIST DIAGRAM OF THE OPEN-LOOP

SYSTEM AND THE QUALITY OF SAMPLED-DATA CONTROL

The frequency characteristic of a sampled-data control system is

related with the frequency characteristic of an open-loop system by the
formula
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K* (e j_, 0) M* 0_) (25)
M_ (j_) ---- 1 + K*(eJ% 0) -_ _1 +_lVI_(j_)"

This formula has a form identical with that of the analogous formula

concerning the system with continuous action. Therefore, in order to

determine M_ = A_ + _Bz"_ from our knowledge of M*(j_), we can make

use of the existing diagrams and monograms worked out for system

with continuous action (Fig. 19).

The following conclusions can thus be arrived at:

Conclusion 1.

The overshoot in a sampled-data control system does not exceed 22

percent, if the Nyquist diagram of the open-loop system does not enter

the region limited on its left side by a straight line parallel to the imagi-

nary axis and passing through the point (-- 1 + j0), and by a circle of

radius p = -_ and having its centre at the point --y + j0 , and if

the Nyquist diagram has only one intersection point with each curve

A_ = const.

Conclusion 2.

The time characteristic b(n) of the closed-loop system is a monotoni-

cal function (therefore no overshoot occurs) if the Nyquist diagram does

not enter the region limited on its left side by a straight line parallel

to the imaginery axis and passing through the point (-- 1 + j0) and by

a circle of radius p =-_ and having its centre at the point --_ ,j0

and if the Nyquist diagram has only one intersection point with each curve

A_ =eonst; if, moreover the increments of the frequency A _o corre-

sponding to the interesection points with the parallel curves A_ = const,

constitute a decreasing sequence with the growth of _.

5. SUMMARY OF THE PROCEDURES ESSENTIAL FOR PERFORMING THE

FREQUENCY SYNTHESIS OF A SAMPLED-DATA CONTROL SYSTEM

A diagram of a simple sampled-data control system is shown in Fig.

16. In order to carry out the synthesis of such a system in terms of the

frequency-characteristic method, the engineer must perform a number

of actions as listed below:
1

1. The characteristic K_ W_(j(o)_- of the controled system and

of the servomotor (Fig. 17) must to be plotted.
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2. Graphically, by way of summingup the valuesof .the function
_ 1

K_ Wa [j (_ 4- 2_m)] jT 1 (_ ..}_2_m) in terms of the formula used in describ-

ing the Property 8, the pulse characteristic M*(j_) must be determined
(Fig. 18).

3. By applying to Fig. 19 a tracing paper with circles indicating the

constant values of the real component Az(_ ) in the closed-loop system,

the plot of A*(_) must be determined.

Fig. 16. Sampled-data control system

4. Making use of the properties just proved it may be verified wheth-

er the assumed overshoot o is obtained. If o is too high, then it must be

considered how to correct the plot of A*(_) _ that the overshoot shall be
decreased.

5. It is also not difficult to realize what should be the plot of the

(continuous) frequency characteristic so that a more suitable o 4) will be

obtained. __m M'_;

1
-f _ B J_'_f" ii

Fig. 17. Characteristic K Fig. 18. Characteristic M*(jc5

4) It is possible to calculate and draw in advance several typical characteristics
KW (jco) and M* (_) corresponding to one another. The engineer -- having at his
disposal such characteristics -- would have a better orientation how to modify the
function KW (j_o) so that a more advantageous plot of the function M* (_) might
be obtained.
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6. Knowing the frequency characteristic of the controlled system and

the required frequency characteristic of the open-loop system, the frequen-

cy characteristic of the corrector must be determined (by dividing the

above characteristics one by another).

Fig. 19. Curves for the constant values of the

real component of the frequency characteristic

of a sampled-data control system

7. The synthesis of the corrector must be performed by means of

well-known methods in terms of the given frequency characteristic.
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TOPOLOGICAL CONSIDERATIOI_ AND SYNTHESIS

OF LINEAR
NETWORKS BY MEANS OF THE ME'FHOD OF STRUCTURAL

NUMBERS 1)

 65-56

Two problems are discussed in the paper, namely: 1. formalization of the

concept of a system, 2. analysis and synthesis of linear systems by means of the

algebra of structural numbers.

As regards the first problem, the author has considered three different models

of a system, namely, an abstract model, a topological model and a concrete (physical)

model. A concept of the topological structure of a system and a concept of similar

systems have been discussed a.long with other ones.

As regards the second problems, a new method is presented, namely, the so

called algebra of structural numbers. It facilitates the analysis of linear electric

systems and makes it possible to solve the problem of synthesis of a two-terminal

or a four-terminal network in a general manner. By making use of a digital comput-

er, we can find a set of systems with different structures which realize a given

impedance function or a transfer function.

The algebra of structura'l numbers can also be applied, aside from electrical

engineering, to solving linear algebraic equations. Moreover, it gives us a very

simple algorithm for determination of all possible trees of a graph or a multigraph.

The present paper is an extension of the method published by the author for the

first time in the Journal of the Franklin Institute, December 1962 [1]. f_ c_i_]

1. INTRODUCTION

There are several methods of analysis of linear electric systems.

The traditional methods, which might also be called classical methods,

for the most part make use of the theory of determinants and the matrix

theory of Cayley. Such methods are quite sufficient for analyses of sys-

tems with not very complicated structure. At present, however, the
degree of complication of systems e.g. in radio engineering, wire com-

munication and automatic control, is often very high. The analysis of

such systems by means of traditional methods brings about fairly cumber-
some calculations. As a result, there appeared a claa_ of new methods

which are often called "topological methods". No really basic concepts of

the algebraic nor combinatorial topology are involved in these methods.

They are spoken of as topological, mainly because of the fact that the

1) Archiwum Elektrotechniki (Vol. XII, No. 3, 1963, pp. 473--500).
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configuration of the connet_ions between the elements of the system

makes possible the reading :of their dynamical properties. As regards

these methods, special credi_ should be given to the research of Chinese

scientists initiated by Wang in 1934 [3]. I also wish to mention here the .

paper by H. Wo_niacki [5] who contributed many new ideas to the con-

cept of Wang.

The present paper is confined in principle to two problems, namely:

1) formalization of the concept of system,

2) analysis and synthesis of linear systems by means of a new method

which the author proposes to call the algebra of structural numbers, and

which is a continuation of the method of Wang.

The author believes that the algebra of structural numbers is

a method on the basis of which it might be possible to solve the problems

of the synthesis of linear systems in a general manner without introduc-

ing restrictions in relation to the structure of the system being designed.

2. FORMALIZATION OF THE CONCEPT OF SYSTEM

2.1. Introduction

It is worth noting that the concept of system is not usually specified

precisely enough and is most often understood in an intuitive way. How-

ever, an intuitive understanding of the concept of system may bring

about some misunderstandings, in particular when the analysis or synthe-

sis of a system is to be carried out on the basis of the topological method.

It is clear that in constructing a theory of a system, it is convenient

to introduce such a theory in a most general manner, rather than to

confine it to an electric system. Therefore, we are going to talk about

the system conctived in terms of cybernetics in the hope of achieving

thus greater generality.

We distinguish three basic concepts of a system, namely:

a) an absract system (based on the theory of sets),

b) a topological system constituting a geometrical representation of

the abstract system,

c) a concrete system constituting a physical representation of the

topological system.

The above idea is represented in Fig. 1.

By ascribing different contents to the abstract model, it is obviously

possible to distinguish many different concrete systems, such as for in-

stance, electric, hydraulic, mechanical, thermal, biological, economical,

praxeological systems, and many others.
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2.2. Abstract model of a system

The concept of an abstract system can be based on the set theory

and the theory of relations. Let us consider a finite subset M of a certain

topological space (e.g. in the Euclidean space E _) and determine in it

a binary relation 9_ as a subset of the Cartesian product M X M

_ C M X M (1)

The relation Q_ is then a set of ordered pairs {x, y} of certain elements
of the set M.

___icol m_odel
s_stem

I (bosedof thethe-F- _ (geometrice.lre-]

Fig. 1.

We write

x_}_ y - (x, y} (:)_. (2)

The set of the antecedents of the ordered pairs belonging to c_ is

called the left side of the domain

The set of the consequents of these pairs is called the right side of the

domain

dr _.

The sum of both domains of the relations is called the field of the

relation and is denoted by _.o_ ; hence

,79_ = d l 9_ + d_ Q_,

where the symbol + is understood in the sense of the algebra of sets.

The elements of the left side domain d19_ are denoted by dtr, and

these of the right side domain d_ c]_ by drr; hence

d lr (_ d t_}_; d,r ( drQ_.

Now let us introduce the following definitions:

Definition 1. A realation R will be called a structural relation in the set M,
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if and only if for each pair of non-empty sets X and Y satisfying the

conditions

X + Y = M, X.Y = 0, (3)

Ihere are elements x ( X and y ( Y, for which at least one of the following

relations holds

x h;y or y h;x. (4)

The notion of a structural relation will be used in determining an

abstract system based on the theory of sets.

Defintion 2. A relation I_ which is structural in the set of a topological

space will be called a set-theory system. Elements of the relation '7l will

be called the elements o] a set-theory system.

In virtue of the above definition the concept of a set-theory system

is identified with the concept of a structural relation. From the definition

of this relation it follows that the system contains no isolated elements
in the sense that each element of the set M is in a determined relation '_,_

with at least one other element of the set M. The set M is then the field

of the relation _, that is

M = _. _,'. (5)

Elements of the field of the relation /? will be called the vertices of the

system.

If an element r is an ordered pair

and y -- the end of the element r, that

r = {x, Y/ = x = the beginning,

Depending on the properties of

(x, y}, we shall call x the beginning

is

y = the end of the element r.

the structural relation h;, we may

distinguish several types of set-theory systems [2].

So, e.g. a set-theory system will be called the oriented system if the

relation determining that system is asymmetric, i.e. it satisfies the con-

dition

x h_y-_>ynon _x, for any x,y(M. (6)

If condition (6) is satisfied not for all the elements x, y of the set M,

the system _ will be called partly oriented.

A system will be spoken of as compact, if the relation determining

it is a connected relation, i.e., it satisfies the condition

x,y(M:>x _y or y _x. (7)

If for certain x (_ M there holds the relation

x %J x

we say that the set-theory system possesses its own elements.
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We shall now define the notions of input and output of a system.

Defintion 3. The vertices of a system which are exclusively the beginn-

ings of its elements will be called the inputs of the system; those which

are merely the ends of its elements, will be called the outputs of the

system.

The inputs and outputs are called the boundary vertices of a system.

The set of inputs and outputs is called the boundary of a system. All

the vertices which do not belong to the boundary are called the interior

of a system.

Let X denote the set of inputs, Y -- the set of outputs, and B -- the

boundary of a system; we then obtain

X--_d l_)?-d r )_, Y=d r h_-d_ _, B=d I )_--d r )_, (8)

where the sign -- denotes the symmetric difference of the sets dl)_ and

d r h _.

Set-theory systems may be broken down into the following cate-

gories:

1) initial systems -- possessing no inputs, that is

d I )_--d r_)_=O, (9)

2) final systems -- possessing no outputs, that is

dr:)_ -- d_-_ = 0. (10)

3) detached (isolated) systems -- possessing no boundary

d l:)_-" d_-h _=0, (11)

4) relatively detached systems -- possessing inputs and outputs,

that is,

dl c)? _ dr )3 :# 0 and dr )_ -- dl )_ :/: O. (12)

A system consisting of a connection of an initial, a relatively de-

tached and a final system is schematically presented in Fig. 2.

s£1stem isolated Stlstem
system

Fig. 2.

2.3. Topological model of a system

2.3.1. Definition of the topological system

The notion of a one-dimensional simplex will be understood as a ho-

meomorphic transformation of a segment (geometrical simplex). Fig. 3
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shows some examples of one-dimensional simplexes with the vertices x, y.

The vertices of a simplex will be designated by circles. A one-dimension-

al simplex with the vertices x, y will be denoted by the symbol (x, y).

a_ _) cj

Fig. 3.

Let us assume a set-theory system _ and define the following trans-
formation

F(_?) = _ r(r), (13)
rCR

which maps each branch r = (xt, Yt) of the system in the non-empty

subset St of one-dimensional simplexes determined in the Euclidean

space E n. with the vertices at the points xt and y_. The transformation F

will be called the geometrical representation of the set-theory system c)L)

Denoting

S = r(_ _)

we define then the transformation F as

S = r (:)?) :> r (r) = s, C S, s t =7_ 0, (14)

where St is a set of one-dimensional simplexes with the following proper-
ties

s_ (S t -- s_ = (x_, Yr), r ---- (x_, y_}. (14a)

Now we introduce the following definition:

Definition 4. The set S of one-dimensional simplexes determined by Eqs. 14

and 14a is called the topological system spread on the structural relationC))L

An example of a topological system is for instance a graph (multi-

graph) made up of the force lines of an electric field existing between two

charges: positive and negative (Fig. 4a). Another example of a topological

system is the network shown in Fig. 4b.

_J

Fig. 4.
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A systemis spokenof as an orientedsystemif all the simplexes
belongingto it are orientedsimplexes.Otherwisewe speakof a non-
-or_ientedsystem.In the caseof a non-orientedsystemcertain vertices
are assumedto beconventionalinputs or -- conventionaloutputs.

2.3.2. Notion of the Structure of a System

Let us now discuss the definition of a topological structure of a sys-

tem. Two systems $1 and $2 will be called homeomorphic if there exists

a function f

Fig. 5.

J (s) = _ f (s), (15)
seS

which is different-valued, continuous, whose _nverse f-1 is also a con-

tinuous function, and which maps the system $1 into $2:

s, = f(s_). (16)

Let us now divide all topological systems into separate classes by

placing in the same class those systems which are homeomorphic. Such

classes will be called topological structures and will be denoted by the

symbol S. The following equality is then assumed:

$1 = Se - (the system S 1 and Se are homeomorphic) (17)

Fig. 5. shows an example of four different systems having the same

structure. Such a structure will be called the bridge structure.

Elementary structures are presented in Fig. 6. Those are the struc-

tures of path, cycle, star and dendrite, respectively.

2.3.3. Classes of Similarity of Topological Systems

The electrical engineer specializing in the theory of electric systems

is well aware that a system with determined dynamical characteristics,

for example an equilizer or electric filter, can be realized in different

manners by means of systems with various structures, such as ladder

structure, bridge structure, etc. This follows from the general principle

according to which the systems having different topological structures can
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be characterized by analogical properties, for instance, they can transform

input signals in an identical manner. Therefore, when dealing with prob-

lems concerned with the general synthesis of systems, we are less inter-

ested in obtaining a certain structure, than in defining a class of struc-

tures satisfying the conditions set forth in advance. It appears that for

a broad domain of problems pertaining to the analysis and synthesis of
systems, an appropriate definition of the above class of structures should

take into account an investigation of how those structures are expanded

into dendrites. The following discussion is devoted to this problem.

Fig. 6.

First of all it is necessary to introduce the notion of a determined

topological system.

A topological system, the branches of which are set into one-to-one

relation with natuval numbers so that each branch corresponds to another

number, will be called the determined system. The function setting into

one-to-one relation the branches with the above natural numbers will

be called the describing function. From the mathematical standpoint

a determined system can be considered to be an ordered pair,

:_ = (S,f/, (18)

consisting of the connected set of one-dimensional simplexes S and the

describing function f.

A determined dendrite will be called a tree. Two trees

T, ---- ($1,]1) and T e = (S2, fe) (19)

will be spoken of as similar trees, and denoted T1 _ T2 if fl(S1) = f2($2),
that is

TI ,,_ T.., -- f_ (S_) ----f.., (S.,). (20)

Fig. 7 shows some examples of similar trees.

Let us now introduce an important definition.
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a)

I Y 2
7 Ii 1
11

Fig. 7.

Definition 5. Two determined topological systems

__ ---- (81, 51) and ::)3 = ($2, 52) (21)

will be called similar and denoted by c[ _ _}3, if their expansions into

trees contain exclusively similar trees.

The class of all similar determined systems will be designated by the

symbols ._[, ')3,... and will satisfy the following condition

:_ = Q_ - (the system _i and _)3 are similar). (22)

Fig. 8 presents example of two systems w_th similar structures, and

their respective expansions into trees.

Fig. 8.

4 4

5 5

2.4. Concrete model of a system

In order to specify completely the concept of a system, we still have

to define a concrete model which is the physical representation of a sys-

tem. Since the main purpose of the present paper is to determine methods

of topological analusis and synthesis of systems, we shall confine our-

selves to presenting the definition of concrete system.
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A concretesystemis obtainedfrom a topologicalsystemby setting
into one-to-onerelation certain physical quantities with its vertices
(nodes)and branches.

Thuswedeterminethe followingfunctions

fl:M--+ X, f2:S---> Y, (23)-

where X and Y are the sets of physical quantities, that is, of quantities

having dimensions in a given system of units, for instance, in the c.g.s.

system.

In the case of an electric system X is the set of potentials, and Y

is the set of currents. The elements of the sets X and Y are, in a general

case, functions of time and are called the signals.

The chapter concerning formalization of the concept of a system is

concluded here, and we are going to pass to the algebra of structural num-

bers, which is a useful method in solving the problems of analysis and

synthesis of linear systems.

3. METHOD OF STRUCTURAL NUMBERS

3.1. Foundations of the algebra of structural numbers

In order to solve the problems involved in the topological analysis

and synthesis of systems, it is necessary to have a proper calculation

algorithm. Such an algorithm can, of course, be constructed in different

ways. The algorithm should, however, make it possible to solve the re-

quired problems in a possibly effective and simple way, this being the

essential requirement. The algebra of structural numbers presented in

this chapter creates a basis for constructing such an algorithm character-

ized by economy of work and calculations in comparison to other existing

methods of calculation.

The notion of structural number is somewhat similar to that of ma-

trix, which is widely applied in electrical engineering. This similarity is,

however, merely apparent, since the calculus of structural numbers is

based on quite different definitions of operations from those in the matrix
calculus.

We shall call the structural number the system A of natural num-

bers arranged in the following table

[-0¢11, _12 .... O¢ln 1

A = 1°¢21'_ 22 .... _X.2n[ (24)
[ O_rnl,O_rn2,...OCmn t.
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Thissystemwill beconsideredasasetof columns

Ck ---- {_lk,a2k, ... amk}; a,k =/=_ik,(iCj) (25)

which in turn are unordered sets of natural numbers. The columns -- as

sets -- will be considered as equal if they contain the same elements

(independently of the succession of elements). It is assumed that in

a structural number no identical columns can appear.

For structural numbers the operations are defined as follows:

Defir_ition of the equality. Two structural numbers are said to be equal

i.f they contain the same columns.

Example:

Definition of the sum. The sum of two structural numbers A and B is the

structural number containing all the columns of the number A and B,

except for the identical columns (moreover, containing no other columns).

Example

[:::].[:::l=[::I:I:]=[::::]
Definition of the product. The product of two structural numbers A and

B is the structural number, the columns of which are the sums (in the

sense of the algebra of sets) of all the possible combinations oJ the columns

of the numbers A and B, except for the maximal even number o_ identi-

cal columns, and for such columns where any element is repeated (more-

over, the product contains no other columns).

Example

[iiIllll][i!]2 , 2 5 3 °
" 5 5

Of course it is necessary to distinguish the structural n_'_ber [_?]

containing one and only one column, which is the empty set 8, from the

structural number [ ] containing no column. It can be observed that the

number [ ] is the modulus of addition, since for any structural number A

it satisfies the equation

A+[]=A, A[]=[]. (26)

Accordingly we shall simply denote the number [] by the symbol 0 and
write
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[ ] ---- 0. (27)

The number [0], on the other hand, is the modulus of multiplication, as

it satisfies the equation

A [0] = A, (28)

and consequently it will be denoted by the symbol 1

[0] = 1. (29)

It can easily be noticed that the equation

AB = 0 (30)

does not imply A = 0 or B = 0, and consequently the set of structural

numbers has zero divisors. A pair of structural numbers (A, B} satisfying

Equation (30) will be called a singular pair.

Example. A singular pair consists of the following structural num-
bers

A ---- , B = [3 4]

since we have

Evidently the number []----0 constitutes a singular pair with any
structural number.

Let us take into consideration two arbitrary structural numbers A

and B. From the definition of the equality and the sum it follows that

there is one and only one structural number X satisfying the equation

B+X=A.

This number will be spoken of as the difference of the structural num-

bers A and B.

X=A --B.

The operation determining the difference of structural numbers is

called substraction. It can easily be noticed that the d_ifference of the

structural numbers A and B is the number X -- A ÷ B and the following
relation then holds:

A -- B = A ÷ B. (31)

From Eq. (31) there follows the conclusion that in the set of structural

numbers, substraction can always be substituted for addition. Substrac-

tion of structural numbers is then uniquely determined and always fea-

sible; the set of structural numbers is therefore a set closed with respect
to addition and substraction.

2O8



We are going to discussnow the following conceptsconnectedwith
structuralnumbers:namelytheconceptsof

• a) ageometricalimage,
b) acomplementarynumberandinverseimage,
c) adeterminantfunction,
d) analgebraicderivative,
e) afunctionof simultanity.

3.2. Some properties of the algebra of structural numbers

3.2.1. The geometrical image of a structural number

It is known from the theory of complex numbers that the image of

a complex number is a point on the Gauss plane. But the geometrical

image of a structural number is the graph (topological system) all trees

of which are determined by the columns of that number. A geometrical

image of the structural number is then the class o] similar determined

systems. For example the determined topological systems presented in

Fig. 8 constitute the image of the following structural number A:

i .11 . 1A = 33444 •

55555

3.2.2. The complementary number and the inverse image of a structural
numb er

If a set of elements occurring in a given structural number A is

denoted by _{, then the complementary structural number will be the

number A a, the columns of which are differences (in the sense of the
algebra of sets)

_ -- C1, _ -- C2 .... _{ -- Cn, (32)

of the set A and the columns Ci of the number A.

Example:

A -= 4 , Ad = 5 • (33)

7 6

For this case we have

s'_ = {2,3,4,5,6,7}.

The inverse geometrical image of a structural number is the graph

(topological system) all co-trees of which are determined by the columns
of that number.
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It canbenotedthat the imageof a givencomplementarynumberA a

is simultaneously the inverse geometrical image of the number A.

Table I shows the images and inverse images of certain structural

numbers. It may be noted that the inverse image of a structural number

is a graph with a dual structure (in Cauer sense) with respect to the

graph representing its image (for planar graphs).

3.2.3. The determinant function of a structural number

The following function is determined on the set of structural num-

det A _ det

z_i k _Z z:_ik GZ

bers:

0¢11 • • • _ln

(_21 • • • _2n

OCtal . . . _Xmn

k=l i=1

whare Z is the subets or the given complex numbers Z_k. For simplicity
we shall write det A instead of det A.

Z z:_ikGZ

Example:

det 2 4 ----zl z o z_ + z2 z4 z5 -b z3 z7 zl ;
Z

35

zl,z_,...z 7 _Z.

The establishment of the determinant function on the set of struc-

tural numbers entails important practical consequences. Owing to the

determinant function we can, for instance, examine the properties of

concrete systems whose topological structure is determined by a given
structural number.

3.2.4. The algebraic derivative of a structural number

The algebraic derivative of a structural number A is determined by

the following formula

columns not containing _ being omitted,
Od __ A (35)
O_ and the element _ being omitted.

It can be noted that the following relation holds

det oA _ 0 [detA]; z_(Z. (36)
z Oa OZ_ Z
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No. S_ruc_urol numbers

[:;]

Geomel-ric imag_s

o o

5 ¸

Ioi. 2

12_ 3

c,(1 .c_ 1.c_ 1. c_ 1
c_* 2. c_ 2 .c:_. 3,0_. 3]

.c_4.01. 5 .c_ 4 . c_51

c_1.c_1.(_. 2, 6_2._ 3

(D(* 3. O& 4 .(:_, 3 ;O_,4, (D(. 4

i

O_ 2O(, 1
O

C_ 3

(_tv 1 C_? C_. 3

Or,1

C_ 4

Ct, 2 ID_I

12_3

(_5
Ct, 5

Geometric inverse imoges

ot,_

IC_C_ C_5 IDa.4 C_ 5

o_,,J

: 4

14. 21 I"_



Example:

A= 35 ;

2 7 01

We establish now the following

[24398]. OA _[141571--= 2 ' 02 3 "

OA
Property 2. An inverse image of a structural number-_a is the in-

verse image of a number A in which the branch a is erased (Fig. 9).

II I
I o--_ I
I I
k_ --J

Fig. 9.

It is not difficult to prove that for any two structural numbers A1

and A 2 the following relations hold

0 (A, + A2) = OA, 0A2 0 OA, OA-o0_ 0---_ ÷ 0--_--' 0_ (A, . A2) = _ A.z + _ A_. (37)

The notion 9f an inverse derivative

_A

_a

is defined in the following manner:

all the columns that conta:,n the
_A _--A (38)
_a element _ being omitted.

Example

A= 54 ' _-- ; -_-= "

The inverse derivative has the following property:
_A

Property 2. An inverse image of a structural number -_a is the in-

verse image of a number A in which the branch a is short-circuited and
erased.

It can be noted that for any two structural numbers A1 and A2 the

following relation holds:

(A 1 + A2 ) = 6A1 ¢_A-o
_ _---j-+ _--j-, _ (A_. A.o)=
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3.2.5. The simultaneous function

The term simultaneous function of a given structural number A (the

inverse :image of which contains oriented branches a and fl) is given to

the function denoted by the symbol

Sim (0A OA).
z as' a/_ '

and determined as follows:

[oA, oA)1. The function Simz k-_-_ a/_

coefficients +1 and --1

z_ik ( Z (40)

is a linear combination with the

of the terms occurring simultaneously in the

OA
functions det OA and det--

z as z 0/_"

Fig. 10. Fig. 11.

2. If -- after erasing from the inverse image of the number A the

branches determined by the elements of a given term -- we obtain

a cycle with congruous (non-congruous) orientations of the branches

and t_, then that term should be assigned the coefficient + 1 (--1) (Fig. 10).

The fundamental notions and properties of structural numbers estab-

lished in the present chapter are a basis for the use of the algebra of

structural numbers in the problems of analysis and synthesis of electric

systems.

3.3. Analysis of electric systems by the method of structural numbers

By means of the notions of determinant function and simultaneous

function, we can express any functions characterizing a system, for

instance, input impedance, voltage transfer function, current transfer

function, voltage-current transfer function, or composite transfer coef-
ficient.

Let us consider a passive four-terminal network (Fig. 11).

For such a four-terminal network the following characteristic func-
tions can be determined:

U2 Is E E ,f z_
Ku = _- , Ki -- 11 , Z1 ------11, Feff= In _ ]/ --zz (41)
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In termsof the theoryof structural numbersweobtainthe following
formulae:

Sim(  ( )Sim 8A 8A
z 7.

K. -- det A z_ ; K_ = OA '
z det --

z 8_

det A

Zl ___ z .aA ' Fet_ = in
det ---

Z a0¢

det A
z 1

2Simz 8-_ ' a_

(42)

In all the above formulae A is a structural number, the inverse image

of which is the given four-terminal network. Z is the set of impedances

of the system.

We also have the following relations

1 1

Calculation of the structural number A is carried out on the basis of

the following:

Theorem 1. The structural number A is equal to the product of

P1, P2 .... Pn of one:row structural numbers corresponding to all the

linearly independent cycles of its inverse image.

Example 1. The structural number A, the inverse image of which is

represented in Fig. 12, is equal to the following product:

Hence,

A ----P_PsPa ---- [1 3 5] [2 4 5] [3 4 6].

135

x 245

345

A _ ]2244555224 5222

4636346466 5345

AlsoA=[1 3 5][1 2 6][1 2 3 4]; etc.

A structural number can also be determined simply from knowledge

of the graph which is its image. We make use, then, of the following:

Theorem 2. A structural number A with a given geometrical image,

having n vertices is equal to the product P1, P2 .... P,-1 of one-row struc-

tural numbers corresponding to (n -- 1) arbitrary vertices (nodes) of its

image.
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Example 2. The structural number, the image of which is presented
in ,Fig. 13, is

. Also

A=[123] [245] [567] [17].

A=[346] [245] [567] [17]; etc.

Let us now take an example of analysis of an electric four-terminal

network in which we use the algebra of structural numbers.

Fig. 12. Fig. 13.

Example 3. Let us calculate the voltage and current transfer func-

tions of the four-terminal network shown in Fig. 14.

Fig. 14.

We have

A=[134] [235] [456]

We multiply according to the following scheme

Hence

A =

134

235

455

[i 1 !11 3331,44t4il2233355222 522 3

5645646456 656 6 .

al 5 6 "
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The columnsoccurringsimultaneouslyin the abovederivativesare
distinguishedby rectangles.Thesimultaneousfunctionis then

Therefore

Sim(aAaA
z \ a-l" _2-] = Z3 Z4 + Z3 Z5 + Z3 Ze + Z4 Z_.

(ZaZ4+Z3Zs+Z3Z6+Z4Zs)Z2

K. = zIZ2Z4+Z_Z2Z5+Z_Z2Zo+ZtZaZ4+Z_Z3Zs+ZIZ3Zo+ ... +Z4Z5Z_

Z3 Z4 + Z3 Z5 + Z3 Z6 + Z_ Z5

K, = ZiZ, + Z zs+ z2Z6+  -z zo + z z, +

It can be seen from the above example that great advantages of

calculation are gained by the use of the algebra of structural numbers in

problems concerning analysis of systems.

3.4. Synthesis of electric systems by the method of structural numbers

The classical methods of synthesis of linear systems are prescriptive

methods. They require an individual approach for every concrete prob-

lem of synthesis. The method of structural numbers makes it possible

to solve the problem of synthesis in a very general manner without im-

posing any restrictions on the structure of the system designed. Such

a problem -- due to a high degree of complication in calculations --

should be solved by a digital computer.

The problem of synthesis of an electric network can be split into

two stages, namely,

1) topological synthesis of a graph,

2) calculation of the value of the individual elements in the system.

The term topological synthesis of a graph is understood as a proce-

dure aiming at determinig the class of structures of similar graphs which

make up the geometr,ic image (or the inverse image) of a given structural

number A. From Theorem 1 and 2 cited above it follows immediately that

such a procedure would lead to determining all the possible expansions of

a structural number A into one-row prime factors. A structural number

can, however, have no geometric representation of itself. In this connec-

tion, the following conditigns are specified as necessary and sufficient

for a structural number to have a geometric image.

1. The number A must have the expansion into one-row prime :fac-

tors

A = P1P2 "" Pro- (43)
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2. An arbitrary ele_nent at_ of the numbers P1,-.. Pm may occur at

most in two numbers Pi, P1 of the product (43).

" Moreover, the ]ollowing additional conditions must be satisfied

3. PimP1; i,j=l,2,...m; (i=/=j),

(44)
4. Pi=/=Z Pk ; k = 1,2,... m; (k =/= i).

k

Otherwise we would have obtained A = 0.

The activities connected with the synthesis of the two-terminal net-

work R, L, C, which would be programmed for a computer, are set up

below as an example.

Example. Let us determine a family of structures of systems

realizing the impedance of the R, L, C two-terminal network.

In terms of the method of structural numbers, the impedance of the

two-terminal network can be determined by means of the following for-

mulae 2):

8A (}A d
det ---- det ---

Z= Y 8_ . Z=z_ z _o_
detA ' detA a ' (45)

Y z

where A is a structural number, the image of which is the graph of the

system, z -- is the impedance of the branch which is between the ter-

minals of our network (Fig. 15).

L
lz

Fig. 15.

In our further considerations we are going to make use of the second

formula which expresses the impedance Z in terms of the impedances zi

of the branches of our network.

Let us assume that in each branch of the network there will occur a

series connection of the resistor, of the induction coil, and of the condens-

er. Thus

Zi = sLi -}- R_ + s -1 C:, 1 . (46)

-") We assume that the two-terminal network does not contain shrot-circuited

elements.
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Assumethat the impedance,the synthesisof which is beingcarried
out,is determinedby meansof the following real, positivefunction

Z (s) ---- a,+l s"+1 + ... ÷ a0 -}- ... _- a-(n+1)8 -(n+l) P(s) (47)
b,s" _- ... -t- bo _--.. _-b-_ s :_ : -Q(s) "

We introduce the following denotations:

b -- number of branches in the network,

w -- number of nodes in the network.

It can be seen that in the case of the realization of the system on the basis

of the second formula (45), the degree of the denominator Q(s) is equal

to (b--w+ 1); hence

b--w-i- l=n. (48)

Since, in the process of determining 3b unknown values of the ele-

ments of the system we obtain (4n _- 4) algebraic equations, the following

inequality must be satisfied:

3b_4n + 4, (49)

which together with the formula (48) yields the following evaluation for
the number of nodes in the network

Since the number m of the factors in the product (49) is equal to

w -- 1, we can generally assume that

m-_ E(n +3-4) + k: k _ 1,2,... (51)

where E(x) denotes the entire x.

In connection with the above, the network will have the number of

nodes as follows

b:E(n_4)+k- ÷n', k-----1,2,... (52)

The activities connected with carrying out the synthesis are specified

as follows:

1. We assume that m = E (n_4)+ 1 and consider the following set

of branches

_]_---- {1,2 .... b,; b:E(n-_4)+n_-i

in terms of which we set up the products of one-row structural numbers

A ----P1P2... pro,

according to the principles of realizability given formerly (43) and (44),

with the assumption that the numbers PI consist of at least two elements.

For example:

A ----[1 2] [2 3] [3 4 5]... etc.
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By carrying out multiplication weobtainall the possiblestructural num-
bers A1, A2 A3 .... At,... and thus all the possible graphs corresponding

tok ---- 1.

2. We find all the complementary structural numbers

ALaL ....4, ...
3. We calculate the inverse algebraic derivatives

51 ' 52 '"" 5_-'"" _b

4. We find the determinant functions

get A d, get SAd---; a= 1,2,...b.
z z 5_

5. By comparing the coefficients of the rational functions

5A d
det --

P (s) z 5a (53)
q (s)- - det Aid z_,

Z

we obtain the following sets of nonlinear equations 3)

¢¢,i . . .f,,÷l(Rl"" LI'" C1"" ")=a.+l'

f_-'(',+l)(RI' " " LI' " "C1"" ") = a-(,+l)' (54)

_)(R1,...L1,...C1,...)=b ,

_i (R1,.. " L1,... C1,. ..) : b_n.

These sets of equations can be solved by a digital computer for

example, by means of the relaxation or iterative method; we obtain then

the values of the elements in the particular branches of the network, the

structures of which have been determined by the structural numbers

A1, A2 .... At ....

It can be seen that the number of unknowns is greater than the num-

ber of equations by the quantity 5:

In this connection the values of _ elements in the system (e.g. inductances)

are assumed to be zero.

3) We disregard such structural numbers as A_, for which the r_c_minat.or and
denominator of the expression (53) are divisible.
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We can alto assumeadditional equationsdeterminingthe relations
betweenthe elementsof the system.For instance,we may assumethat
all the inductancesoccurringin the two-terminalnetworkbeingdesigned
areequalto oneanother.

6. If necessary,we repeatthe entire cycleof calculationsfor

m= E(n_3 4 ) _ 2 m= E(n _3_4 )+3,etc.

It is clear that the system now obtained will contain a greater number of

branches than did the" systems calculated formerly for k = 1.

Table II shows a simplified block diagram for a computer, which

includes all the operations connected with carrying out the synthesis of

th R, L, C two-terminal network with a minimum number of branches.

The results of the calculations can be divided into two separate

groups. All these systems in which we have obtained positive R, L, C

elements may be presented in the first group. The remaining systems,

realizable with the use of active elements, will then belong to the second

group.

Appendix
1. Proof for formulae (42)

Let us prove the correctness of the formula determining the current

transfer function K;. This transfer function -- for the four-terminal

network presented in Fig. 10 -- can be found in terms of the following
formula

where

I2_

I2 _ l,
g_ -----_ = is

are currents flowing in the four-terminal network through the

individual circuits containing the branches _ = 1 and fl----2

which have the same orientation,

I2_ are currents flowing in the four-terminal network through the

individual circuits containing the branches a and fl which have
not the same orientation.

On the other hand, since the columns of the number A determine all

aA aA

the co-trees in the system, then the columns of the numbers _ and a-fl

determine those branches in the system, the removal of which converts

the system into a network with one cycle. Identical columns of the num-
3A 3A

bers _ and -_ determine then all those branches the removal of which
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leads to cyclescontainingthe branchesa and fl, that is, leads to the

circuits of the currents I_, and I2,.

Moreover, making use of Maxvell equations we get

zijIi = O; j > l

We can easily find that

i=l

j----1,2,...n.

_'2 _12

K i -- i1 -- A11 '

where An and A12 are the corresponding subdeterminants of the sys-

tem (1).

Clearly, A n is the sum of all the values of the co-trees, if the system

with the branch 1 ---- a being erased. Thus

aA
A, 1 : det--

Z ao_ '

where A is a structural number the inverse image of which is the given

system.

A12 is a linear combination with the coefficients _-1 and --1 of such

co-trees of the system with the erased branch a or fl, the removal of

which implies K :_- 0. After removing any of the above co-trees, the sys-

tem is reduced to a a cycle constituting the circuit of the current 12, or I2p.

Summarizing our reasoning we state that

A12:SiI(aA aA)

where Z is the set of impedances of the system.

Similarly, we can prove the correctness of the remaining formulae

(42).

2. Proof for Theorem 2

It can immediately be seen that the theorem is satisfied for a system

with the structure of a cycle. It is also satisfied in the case of a system

with two cycles. In fact, such a system can always be simplified to the

form shown in Fig. 1-A a or b, where 1, 2 and 3 are the sums of the

corresponding elements of the system. In the case of the system a) we
have

A= 3

and then in fact A = [1 2] [1 3].
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Also in the case b)

A = [121 = [1] [2]-

It can easily be proved that the above results are correct in the case

where the branches 1, 2 and 3 consist of any number of elements.

a) b)

Let us now assume that Theorem 1 is correct for a system with n

independent cycles. By reasoning similarly as above we can easily prove

that the theorem is correct for a system with (n + 1) cycles. Thus, by

the principle of induction Theorem 1 is valid for a system with any num-

ber of cycles.

Theorem 2 can be proved in a similar manner.

3. Proof for formulae (45)

Let us present a proof for the second formula of (45). There is a well-

known theorem that the impedance of a networek measured between the

nodes a, b i equal to the ratio

Z- A_b
A '

where A is the main determinant of the impedance matrix of the given

network,

Aab is the main determinant of the impedance matrix of the network

with short-circuited nodes a and b.

Moreover, we have (for the system presented in Fig. 13).

---- det A ; Aab = z_ det _,A
z z o

where the formula for Aab results from the property 2.

In similar manner, we may present a proof for the first formula

of (45).
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SYNTHESIS OF AN ARTIFIC_._AL LONG LINE

AND AN AMPLIFIER WITH A NEGATIVE IMPEDANCE

BY MEANS OF PADE'S APPROXIMATION METHOD 1)

ABSTRACT

 65-36013

Two problems are discussed in the paper; the first concerns the synthesis

and design of a passive electric system realizing frequency patterns of a transmission

long line -- that is, the characteristics of the impedance and the composite transfer

coefficient of the long line. A system designed on the basis of the method presented

realizes ,long line characteristics in a frequency band six times wider than does

a similar system designed by the method of Zobel [3], the same number of elements

being used.

The second problem concerns a method for designing a nonreflecting four-

terminal amplifier with a negative impedance (negistor), which compensates the

attenuation and amplitude-phase distortions of a long line. This method, which is

based on the conclusions from the first part of the paper, makes it possible, for

example, to design a system decreasing the attenuation of a transmission long line

15 km in length within a band up to 6 kHz. __) _

1. INTRODUCTION

By the term artificial long line, is meant an electrical fourpole which

realizes the frequency patterns of composite transfer coefficients and

wave impedances of a transmission long line within a given frequency
band. Artificial lines are indispensable in every up-to-date wire trans-

mission laboratory. There are not in the professional literature many

papers devoted to the problem of desingning artificial lines. A paper of
essential importance is that by Zobel [3] in which an effective method

is presented for realizing an artificial line in terms of a passive four-pole
of the X type. The main drawback of Zobel's method is the manner

assumed of approximating the composite transfer coefficient of the long
line by means of which is obtained a narrow band of frequencies repro-

duced by the long line. This method is then inefficient from a practical
point of view.

In the present paper the manner of realizing a long line is a syn-
thesis method. The approximation of the exponential function -- which

represents the transfer function of the long line by a rational function --

is effected on the basis of an approximation according to Pade [2]. Owing

1) Archiwum Elektrotechniki (Vol. VIII, No. 4, 1959, pp. 595--615).
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to this approximation, we _tain an almost six-fold broadening of the

band of frequencies reproduced by the system as compared with the

system designed by means of Zobel' method, the same number of ele-

ments being used.

We call the negator an amplifying system, symetric as regards energy

transmission, in which the aplifying effect is obtained by means of nega-

tive impedances. The task of a negator is to compensate attenuation and.

to correct attenuation distorions brought about by a transmission line.

Negistors are designed in a two-pole or four-pole system. The paper

is concerned with a four-pole negistor designed on the basis of the method

for an artificial line. Such type of a negistor corrects attenuation distor-

tions introduced by the line as well as phase distortions, and moreover

does not bring about any reflections of energy.

2. SYNTHESIS OF AN ARTIFICIAL LONG LINE

Let us take as basis of our considerations the lattice four-pole shown

in Fig. 1. The wave parameters of this four-pole are determined by the
formulae

Zl

(1)(2)

Zt

Fig. 1. Lattice four--pole

F 1/z tanh _ = Z1 ,

Z = I Z1Z_,

where F is the wave composite transfer coefficient, and Z is the wave

impedance of the four-pole.

From Eq. (1) we shall, by means of elementary transformations,

obtain the formula determining the transfer function of the four-pole,

corresponding with the matching conditions -- that is, the quantity e -r

i__// Z1
e- r : _ Ze (3)

1 + Z2

An artificial long line will be called the four-pole, satisfying in a

given frequency band the following equalities

Z = ZT, (4)

r -= FT, (5)
where ZT and FT are the wave parametres of the transmission line.
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In order to enable the condition (5) to be satisfied in a given fre-

quency band, we shall approximate the transfer function e -r of the long

• line by means of the rational function

e_rT = e-yrl _ Q _ a0 - a 1x ÷ ae x "° - ... + (- 1)n a n x" (6)
P a0÷alx÷a.,x _ +...+a nx n '

where x = 7T l = /'r

The manner of approximating the exponential function e-rT by

means of the above rational function will be discussed later in the paper.

Comparing the function (3) with the function (6) -- that is to say

satisfying the condition (5) -- we shall obtain

Hence

1--¢ Z1
Z2 _ Q_

1+¢ Zl P"Z2

(7)

F Z_ P -- Q (8)
Z_ P+ Q "

Multiplying and dividing Formulae (2) and (8) by their respective

sides, we shall arrive at relations determining the impedances Z1 and Z2,

namely

P-Q
Zi--p÷ QZ, (9)

P÷Q
Z., = Z. (10)

P+Q

Therefore, assuming Z = Z-I, -- that is, satisfying the condition (4), we
find

a, x + a_ x 3 + as x 5 + ... + an_, xn-l Zl. .Z1 (11)
ao+a2x "_+a4x 4+... + anx n

Z2 a o 4- a_ x'- 4- a4 x 4 ÷... + anx n= ' ' ZT. (12)
a1x -t- as x 3 + a5 x 5 +... _- an_l x n-1

The composite transfer coefficient and the wave impedance of a ho-

mogeneous long line are -- as is well known -- defined by the following
formulae

CR ÷ sL (13)7T = }/(R + SL)(G + SC); Zr = G + SC

where S = 3o_
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Taking then
1

Z, = (R + SL) l ; Zb = l(G + SC) ' (14).

or

1/zo =,zoz ,X = Yr 1 = Zb ,

we shall be able to write the functions Z1 and Z2 as follows

Zl=-alF_ ÷a'\[/ Zb! +"" +a_-l\V Z_/ |/Z,Z b . (15a)
n

z,, [z. ly
ao + a.,'-Z_b + ... + a,, k Zb ]

n

zo [zo V
ao + a2 z_b +''" + a'\ Zb ]

Z., =- I'Z_Z b ; (15b)

a, _--+a 3 + ... +a___

Consider now two particular cases -- namely, the case where the

degrees of the polynomials P and Q are equal to n = 2, and n = 4,

respectively.

Forn=2weshallhavea3=a4=...= 0, and

Hence

a1Z_ Z b

ZI= aoz b + a 2Z_ ;
Z2= a0 Zb i- a_z.

al al "

where

1 1
ZI = 1 1 = 1 1 ' (16a)

+ +--

al Z. as Zb Z_ 1) Z_ 2)

ao a2

_(1) Z_2),Z,, = _,, + (16b)

Z_ ') = aA-Z,; Z_2) = a, Zb '
ao a,,

Z_,) _ a., Z_ ; Z_2) = __a_Zb" (17)
al a s

It is clear then that for this case the impedance Z1 can be realized as

a parallel, and the impedance Z2 as a series connection of two elements

(Fig. 2).
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Considernowthe casein which n ---- 4. In such a case as ---- a6 ----... =

---- 0, and after elementary transformations

Z, = al Za Z_ + a8 Z_ Zb ,
ao Z_ -}- a2 Za Zb -{- a4 Z_

(18)
ao Z_ + a_ Za Zb + a4 Z_

Z 2 =
a 1Z b -}- a3Z_

70 ) 7{21

Fig. 2. In_peda,nees Zl and Z 2 far the case

in which the polyr_om_als P and Q are of
the second order

The expression determining Z1 can be transformed as follows

Z, = (% zb -}- as za) Za Z b

a, Za(alZ b +a3Za) + -_1 Zb(alZb + asZa)+ (asa3

aa ao al_a4._ Z_ Zb
a, a 3 ]

1 1

a_ Zb al Z,
a4 a o

1
+

al a3
2 (% Zb + as Z_)

al as a3 -- a3 ao -- al 2a4

1

1 1 1

zl + + zl + zi"

In a similar manner, we can obtain for Z2 the following expression

Z 2 -= a--! Za + a__oZb +
as al

+
1

2 2

a_ a2 a3 -- a_ a4 -- a s a° "-'_a2
al as

+
1

2 2
a la sa s-ala4- a 3a 0

2 Zb

al a s

(19)

(20)
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From Eqs.(19)and (20),there follow immediatelythe structuresof
two-polesyielding the impedancesZ1 and Z2 (Fig. 3). and the following

relations defining the values of the particular elements

Z_1) = a3 Zb ; Z_2) = a_L Z a ; !

a4 a° I

2 2
al a 3 . _(4) al a3

Z_3) -- - Z b z_ = Za "
-- 2 2 _ 2 2

al a2 a3 -- al a4 -- a3ao al a2 a3 -- al a4 -- a3ao (21)

Z_I) __ a4 Z_; Z (2) -- a° Z b;
a 3 al

2 2 2 2

Z!3) _ al a2 a3 --al a4 - a3 ao Z_ ; Z_4) = _al a2 a3 -- al a4 -- a3 ao Zb
- -- 2 2

al a3 al a3

As a concUtion of realizing the elements Z_ 3), Z_4), Z(23), Z(24), it is

necessary that the following inequalities be satisfied

2 2
al a2 a3 -- al a4 -- a3 ao _ 0. (22)

Fig 3. Impedances Z1 and Z2 for the case in which

the p(_lynomials P and Q are of the fourth order

We have thus the synthesis of a lattice four-pole whose transfer

function is a rational function of the form (6), and whose wave impedances

are

Z = I/Z_Zb.

In fact, in order to decrease the number of elements in the four-pole,

it is possible to make use of one of the structures equivalent to a lattice

four-pole (Fig. 4). The structure (C) shown in Fig. 4 is more convenient in

practice than the equivalent structure (b), since the former does not

require the application of symmetrical transformers which cut off the

path for d.c. current in the long line and bring about considerable dis-

tortions in the range of low frequencies. In the system (C), the coils

located in horizontal branches are coupled magnetically with a view to

preserving symmetry. It should be noted that the coils, not being ideally

coupled magnetically, also introduce unavoidable distortions of the fre-

quency pattern. Accordingly, if we want to realize with great accuracy the
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frequencypatternsof a transmissionlong line, we shouldapply the basic
systemof the type X, without regard to the number of elements used.

o b c 22,

Z, ,1 2L 2t

Zj

Fig. 4. Systems equivalent to a lattice four-pole

3. THE PROBLEMS OF APPROXIMATION

The manner of approximating the exponential function e -rr, deter-

mining the composite transfer coefficient of a transmission line by means

of a rational function has a decisive influence on the accuracy of realizing

the characteristic of the designed system obtained as a result of the

synthesis.

It is therefore necessary to lay special emphasis on the question of

approximation. Before discussing the manner of approximation, let us

consider what should be the interval 0 _ X _ b of the approximation

corresponding to the frequency band for which we desire to realize the

determined frequency patterns. In order to establish the interval of ap-

proximation, it is necessary to know the parameters of the transmission

long line. For a cable long line of diameter 0.8 mm we have

R _-_ 70 Q/km ; C _ 40 nF/km ;

L _ 0,7 mH/km ; G _ 0.5/_s/km.

If the interval 0 _ X _ b is an approximation interval, then, taking

into account the dependence

X = l|/(Rq - jo_L)_(G + jo_C),

we shall find that the upper limit of the frequency of the approximation

band is the frequency f0, which is approximately determined by the for-
mula

b e 1

]o_ l_ 2_RC " (23)

Then, taking into consideration the numerical data quoted above, we shall

obtain
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_2

l0 _ 5.68.104 _-. (23a)

Expressing b as a function of l and f0, by virtu of Formula (23a), we

may write

b_i _// 5_6810-2" (24)"

We note from formula (23) that the limit frequency i0 decreases with

the square of the length of the long line being realized.
If we assume that the length of the long line is 1 = 15 km, the limit

frequency is f0 = 6000 Hz, then we have:

1S6.103
b _-_15.10 -2 )/5.68 -- 4.87 _ 5. (25)

For this case, the interval 0 _X _ 5 should be an approximation
interval.

Let us turn now to the problem of approximation. The simplest man-

ner of representing the function ex by means of a rational function is to
X X
__ M__

,express ez as the quotient of the functions e 2 and e 2 and to expand these
functions into Maclaurin's series

x 1 1 _ 1 1 x4
e¥ 1 + _ x + _ x + x3 + "-3-_ '_- "'" P (x) (26)

X X = -- = --

__ 1 1 _ -1 3 1 x4_ Q(x)"
e 2 1---2-x+ _x --_z +_ ...

This kind of approximation is not, however, very accurate. The ap-

proximation error for [ x I = 2 amounts in this case to around 7 percent,
and it grows rapidly with the increase in the variable x. We shall there-

fore apply a different kind of approximation.
Let us consider the rational function

U,,, (x) (27)
V,, _(x) '

where U,., and V,,, are the following polynomials of the variable x

U,,,(x)=c_ 0+alx+a2x 2+...+a,x , (28)
V.,. (x) =/_0 +/_, x +/_2 x 2 + ... + _. x..

Pad_'s approximation is called the approximation of the analytical

function

B(x) _ Co -_- C1X + CeX _ + C3X 3 + ... (29)

by means of a rational function of the form (27) in such a manner that the

expansion of the function (27) into a power series should contain tt + v
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successive coefficients identical x_th the coefficients Co, C1, C2, C3... of

the expansion of the function B(x).

It can easily be observed that the condition of identity of the coeffi-

cients referred to involves the condition of satisfying the following equa-
tions

Co flo = _o,

C1/_o+ Co/_ = %,
.... . ...... ° .

C_/_o+ C_-1/_1+ .-. + C___,fl_,= _,

c_+, _o + c_ _, + ... + cv__+,_ : o, |

......................... ] (31)C_+_,/_o+ C_+t,-_fl_ + ... + C_/_, = O.

The rational function (27 can of course be written in the form of the

quotient of two polynomials P,u,r(X), Q#,_(X) which are relatively prime

(i.e. have no common divisors):

u_,, (x) p,,, (x)
Y_., (x) Q,,v (x) "

It is possible to prove that for an arbitrary function B(x), which is

analytical near the point 0, there is one and only one pair of relatively

prime polynomials approximating the function B(x) in the sense of Pad_,
and that

lim P_,_ (x)
_,+.+_ Q_,,_(x) - S (x). (32)

We shall now determine the rational function approximating the ex-

ponential function e x in the sense of Pad_. For this purpose, in accordance

with [1] we shall consider the following integral

1

f e tx F (t) dr,
0

where F(t) is a given function differentiable up to the order m inclusively,

and possessing derivatives, starting with the order re+l, equal as iden-
tities to zero

F (re+l)(t) = F (m+2)(t) ..... 0.

Thus, we may write

1 1

f etxF(t)dt= F(1----)eXx F(0)x xi fef_F,(t)dt.
0 0

(30)
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Proceedingsom times, we shall obtain

1

;e 'xF dt x[ F (i) F (i) F (m)(i)
l

• (t) =e L x -- x.' +"" ÷ (-1)m-x m+l ,
0

_[ F(0) F'(?) 1)m F(m)(0} ]
L X -x- +"'+(- x |"

And multiplying both sides of the equation by the factor (--1)mx m+l, we

shall find

ex IF(m)(1) -- F(m-1)(1)X + ... + (-- 1)'_ F(1)X m] --
1

-- [F(m)(0)--F (m-l)(0)X _- ..._-(-- i)m F (0)X m] = (-- i)m X m+1f e_ F (t)dt.
0

Assume now that

F (t)= t,(1-- t)" (33)

and that m =/t + _.Consequently we shall obtain

F(0) = 0, F'(0) = 0,...F _"-1)(0) = 0, F¢")(0) =# 0;

F(1) = 0, F'(1) = 0,...F (''-1) (0) = 0, F (_)(1) =_ 0.

Therefore

eX [Ft,+,.)(1) _ F (,+,-1) (1) x + ... + (-- 1), F(')(1)x ,] --

-- [F (_+') (0) -- F (_+_-I) (0) x + ... + (-- 1) F (_)(0) x v] =
1

---- (-- 1} '+_x _+_+_j e t_ F (t) dt.
0

If we expand the right-hand side of the above equation into Maclaurin's

power series, then the first term of such an expansion will be a term with

the power #+_+ 1.

Accordingly, the expansion of the function

U,._(x) F(_'+")(O) -- F(_+v-1) (0) x -_ "'" _- (-- 1)_ F(_')(0) x" (34)
-V/,, (x) - -F(z+_)(1) -- F (;+i--1) (1) x -{- . + (-- i), F (_)(1) x_'

into Maclaurin's series will contain /e + v first successive coefficients

identical with /t + v first successive coefficients in the expansion of the

function e x.

The function (34) then approximates the function e x in the sense of

Pad_.

We shall now determine the coefficients of the rational function (34),

we shall find")

(:):2) It shou_ld be borne in mind that n! (m- n)!
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F Cn)(t) _-

and then for

n -- _ (n -- ),)! (1 -- t) _-n+_ (-- 1)"-x ,

(n),( )F(")(O)---- g ft. (n--tt)!(--1)"-_'=(--1),-_,n! _n-- 7

and for

F(") (1) ---- (n n _)(n /_ _)(n- v)! (--1)" ----( - 1)"n! (n _i v)"

Accordingly, the function approximating the exponential function e z in

the sense of PadS, can be written as follows

V ,.. (x)
V,.. (x)

(_+v)!+(_+_,--1)! 1 x+(_+v-2)! x _+...+_! X v

(35)

The polynomials P#._(X) and Q#,v(X) in this case take the form

V X

P,.v (x)---- 1 + +
,u+_ 1!

+ v(_ -- 1) x e ,(v -- 1)... 2.1 z"3-...+
(# + v) (t, + v --1) 2! (tt+_)(#÷_--l)...(_+l) v!

Q_.,(x)=l tt x +
/_+r 1!

(36)

#(u -- 1) x e _.(# -- 1)... 2.1 x_
(# 3- v) (tt ÷ v --1) 2_- 3-''" 3- (-1) (t t3-v)(ft÷_,_l)...(v3- 1) #!"

In accordance with the assumption, these polynomials satisfy the
condition

lim P_' _(x) _ e _.
_,+,_ Q,,_ (X)

It can be observed that the following relation holds

(37)

Q.,. (x) = P.,.(- x).

We are interested above all in the case in which the polynomials P., Q., v

are of the same degree -- that is, the case for which # = v. Let us denote

# = v = n, and P_,.(x) = P(x),Q_,,.(x) = Q(x).
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Weshallobtain

and

P (x) ---- 1 -t- ---

Q(z) -- 1

Q (x) -- P (- x)

1 x n--1 x 2 a. (n--l)! x" I
2 1! + 2(2n--1) 2! -b .... 2(2n _l_-.._-n + 1) -_-.v'

1 x n--1 x _ .... (n--l)! x" ] (38)• ... -k L,-- 1)" _.-,_---- -:- .... •
2 1! _ 2(2n--1) 21 _.lzn-- 1)...(n+ 1) n!

Assuming then the approximation in the sense of Padb, we shall have

the coefficients in Formula (6), as follows

a0----1 ,

1

a 1 _-_-,

1 n--1 1

a2=-2-2n -- 1 2---('

1 (n--1)(n--2) 1

a3 = 2- (2n- _ 1)(2n" 2) _-.v,

1 (n - i)! i

a, = _ (2n - 1)... (n + i) n! "

In a particular case, when n = 4, we have

ao_ 1,

1

al-- 2'

31 3

ae=_ 21 --28'

1 1 1

a3- 14 31 84'

1 1 1

a4 -- 70 4! -- 1680"

(39)

(40)

We have, then, for this case the following rational function approximating

the exponential function

1 3x._ 1 1 x ,1 -P _ x -_- -t- x8 -P _ P (x)
e x ...... - (41)

1 3 1 3, 1 4 Q(x)"
1 _x + _x _-- _x + 1--6-_x
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Belowis givena table indicatingthe degreeof approximationof the
P (x)

function _Q(x)- to e x for different values of the variable x.

x 3 4 5

P (x)

Q (x)

e X

_O/o

1 2

2.7184 7.3887

2.7182 7.3891

0.000 0.000

20.0655

20.086

0.02043

0.10...

53.7275 128.616

54.59 1 148.4

__0"8705 __19"794

1.54... I 13.33...

It can easily be verified that the coefficients (40) satisfy the inequality

(22)

al a2 aa -- a_ a4 -- a_ a 0 < 0,

and therefore, applying the above approximation, we arrive at the real-

izble impedances Z_ 3), Z(14), Z(_), Z_4).

The degree of approximation can be considerably increased by the ap-

plication of a number of sections of the type X connected in a chain. The

function e x can thus be representend in the form of the product

x x x (x)
ex=eNe N e_-=e _ N

N

X

and then, approximating each of the N factors e N by the function of the

form (41), we shall obtain

[1 1X + 3 (___X)2 __ a 1-'-_-'_!" ]N-t- ]P('_-)IN( )/
ex= 1 x 3[__x_ _ l[x_ 3 16-_(N)' =l x (42)

In this manner, the approximation interval is increased N times.
rDIN

In order to realize the function _-_i we make use of a system of N

sections of the type X in a chain connection, the transfer function being

determined by the formula
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We then have

e-NP = 1-v I

Zl

1 -- _//-Z_ P(N)

1 + Z2 Q

(43)

4. SYNTHESIS OF AN AMPLIFIER WITH NEGATIVE IMPEDANCE

Let us discuss a case in which an amplifier with negative impedance

(negistor) is connected to the output of a transmission line having the

length l, which is characterized by the wava impedence ZT and the compos-

ite transfer coefficient I'T (Fig. 5).

Fig. 5. Negator working in con-

junction with a transmission long

line

We shall call an optimal negistor working in conjunction with a cable

long line, such a four-pole which is active: symmetric with respect to

energy, and whose wave impedances -- the initial and the secondary

impedance -- are equal to the wave impedance of the long line

Z : Z T (44)

and whose composite transfer coefficient in a given frequency band is

equal as regards the modulus, and inverse as regards the sign of the wave

composite transfer coefficient of the long line

/" = -- Yr ; (o 1 _ _o _ (o_,. (45)

If the conditions (44) and (45) are satisfied, the total attenuation of

the entire system shown in Fig. 5 will be equal to zero, and moreover,

there will occur no reflections of energy at the input and at the output

of the active four-pole.

It should be noted that the assumption of the equality (45) over the

entire frequency band would lead to a condition physically unrealizable,
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sincea transmissionline is characterizedby the delaysin electric wave-
forms. If, however, the equality (45) is satisfied in a finite frequency
band,this is an agreementwith the conditionof physicalrealizibility of
systems,providedthat the systembeingdesignedis an active one.The
problemof designinganegistoronthe basisof the conditions(44)and(45),
is very closeto theproblemof designinganartificial longline. As abasis
of our considerations,we shall take the lattice four-poleshownin Fig. 1.

Thetransfer function of this four-poleis determinedby the formula

Zl

e-F

-- -Z_l •

I+]//_

Satisfying the condition (45), we assume that

(46)

where P and Q are polynomials defined by Formula (6). From Eq. (46),

we shall obtain

_//Z, Q- P (47)
Z2 Q+ P"

Hence

Q-P
z1-Q+pz,

Q+P
Z 2 -- Z.

Q-?

(48)

Therefore, assuming that Z = Z.r, and thus satisfying the condition (44),

we shall obtain

ZI_ alx+a 3x 3+a 5x _-4-... +a,_lx "-1-.... ZT, (49)
ao + a2 x _ + a4 x 4+... + a.x"

ao + a2 x _ + a4 x _ + ... + a.x"
z_ = - aix +a3 x_+a_x 5+-. :- + a___xo-1_- (s0)

It is now clear that the impedances Z1 and Z2 are (with the assumption

ai _ 0) determined by negative functions. These impedances can be real-

ized by means of tube or transistor convertors. Let us now assume that
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the impedance Z, is realized in an arc circuit and the impedance Z2 -- in

a dynatron circuit. Let the coefficient of conversion be denoted by ilk-

Then

Z,=_kZ_; Z2 =z_
_k

and (51) '

Z_= Z_ • Z_=flkZ2.
flk '

If for a band being amplified w, _< w _< w2 we assume that

_k _ -- 1,

then for this band we shall obtain precisely:

Z_= --. Z,,

z_=-z_.

(52)

(53)

Accordingly, in agreement with Eqs. (49) and (50) the impedances

Z_ and Zz may be designed in terms of the following formulae

a, _b A- aa A- ... -4- an-, --_b I/Z a Z b" (54a)

Z "

ao + a2-_s -4-... + a,(-_bb) 2

n

za [zo_
ao + a2--_b A- ... + a,_-_-b ]

Z_-= --- '

a_ -Zb- + a_ / + ... + a._, \ v --Z[b;

For the case n - 4 we shall have:

a I Z Z_ + a3 Z_ Z b

aoz_ + a2Z_Z b + a 4Z_

aoZ_ + a2Z aZ b+ a4Z2

zp= • alZaZ ÷ a3Z Z 

(55)

The structures of the two-poles Z and ZZ are given in Fig. 3. The

two-poles Z and Z_ are then designed in a manner similar to the two-

poles Z, and Z2 of the artificial long line, using the approximation in

the sense of Pad6. Using a rational function with polynomials of the

fourth degree, n = 4, we obtain a negistor compensating the attenuation

of the transmission lh_e of length l = 15 km in the frequency band up
to 6 kHz.
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Let us now considerthe stability of a negistordesignedin the above
manner

//Z1
e-P

1 -k Ze

Making use of Formula (51), we shall obtain the relation

Z___L_ Z_

It should be noted that the impedances Z and Zz
terms of Formulae (52a) and (52b). We can therefore write

Z_-- al x + a3 x3-F "" Z
ao -k a2 x 2 _ ...

Zp= ao--kasx e-b... Z
al x q- a s x 3 -F ...

and consequently

Denoting, then

f Z__1 _a 1 x -_- a 3 x 3 -_- ...Z2 ao -k as x 2 -k ...

(56)

are designed in

a,x-k asx 3 -k ...
= K (57)

a0 + asx _ + ...

we may write the transfer function of a negistor as

e- r _ 1 -- K/_k (58)
1 --kKflk"

The stability of the system is dependent on the equation

i -k K (s) flk (s) = 0. (59)

If the roots of this equation contain negative real parts, the system

under consideration is not a stable system. Otherwise, the system is

stable. The investigation of stability may be effeeted in terms of the

frequency criteria. From the expression (58), it follows directly that

a system is stable when the amplitude-phase characteristic of the func-
tion

K (jo_) A (jco)

does not comprise the point -- 1 _- jO 8).

_) By virtue of Nyquist's criterion of stability.
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A negistor may most conveniently be realized in the symmetric

system shown in Fig. 6. The amplificatio n band can be extended by means

of connecting a number of sections into a chain. It should, however, be

noted that there is a difficulty in realizing a negistor with a wide ampli-

fication band consisting in the design of suitable convertors which realize

negative impedances in a wide frequency band. Moreover, the stability

of the system may be an obstacle in realizing a wide-band negistor. We

can exert an influence on stability by means of properly shaping the

pattern of the conversion coefficient flk(j_o). In systems encountered in

engineering, the conversion coefficient beyond the amplification band

changes its sign, and consequently the impedances in the range of high

frequencies become positive.

We have the following property for a system with the transfer func-

tion (58) to be a stable system it is a sufficient condition to satisfy the

inequality
]gflk l < 1 for 0 _ _ _ _ol, (60)

where co1 is the angular frequency for which )_ flk changes its sign from

a minus to a plus. The above property is the result of Nyquist's criterion.

The condition (60) can be weakened by imposing a requirement that

KZ k be smaller than unity only near a frequency for which arg Kflk = _.
In the above reasoning, we have assumed that the component_)_eflk

is negative, starting with the zero frequency up to o_1. Actually c)_e flk in

the range of very low frequencies is a positive quantity. This fact, however,

has no bearing on the result of the reasoning effected above. According

to the property wh,ich has been proved, in order to state the stability of

a negistor, it is necessary to investigate the plot of the modulus IKflkI=

iI[//- _z_/Jk]- i in the frequency band from 0 to the limit frequency _ol, for

which )de flk changes its sign and the impedances Z1 and Z2 become pos-

itive. The negistor will certainly be stable, if the modulus K flk is smaller

than unity near the frequency for which arg K flk----n. In designing

convertors, we should tend to have the conversion coefficients in the

amplification band real, negative and approximately constant. For only

then can we successfully realize the impedances Z_ and Z2. The imped-

ces Z 1 and Z 2 would have been realizable in the most appropriate manner,

if in the amplification band

flk = -- 1.

However, to ensure the stability of the system, we may assume that

in the amplification band [ilk[ is smaller than unity, for instance flk =

---- -- 0.9. The plot of the function K ---- ]/-Z_ is shown in Fig. 7. It can
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be observed that this function comprises the point 1 -4- j0, whereas the

function 0.9 K dose not comprise the point 1 + j0. Hence, we may con-

clude that a negistor is certainly a stable system in the case in which the

conversion coefficient flk in the amplification band is equal to 0.9. Making

,kJm
2&

I Conve,erI

-'4

Fig. 6. Basic diagram of

a negistor

04 0.5 08

_J

i Ro

/-z_
Fig. 7. The function K = _/ _._ and

0.9K

use of the plot of the function K given in Fig. 7, we can determine graphi-

cally, on the basis of Formula (58), the transfer function and the ampli-

fication of the negistor. Fig. 8 shows the functions 1 + K and 1 -- K, which

are useful in determining graphically the function e -r. In working out the

(

I
6IkHZ

Fig. 8. Auxiliary functions necessary for
graphical determination of the transfer func-

tion of a negistor

diagrams presented in the Figs mentioned above, we have assumed that

the inductivity of the long line equals zero, which is fully admissible. Fig.

10 presents the amplification of a negistor, as a calculated by the graphical

method for two cases -- namely, the case in which in the amplification

band the coefficient flk------1, and that in which flk =--0.9. The dia-

grams in this Fig. indicate how great is the influence of convertors on

the frequency pattern of the amplification due to the negistor.
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Twofrequencyscalesaregivenin Fig. 9.Theupperscalecorresponds
to the casein whichthe lengthof the long line is l = 15km, andthe line
is amplifiedby a negistorconsistingof onesection.The lowerscalcorre-
spondsto the caseof a two-sectionnegistorworking in conjunctionwith
a longline l = 15 km in length.

Pk = -0 9,'",

'_k=-!

J
2-200 400 ,000 2000 ,l aCV_'[Hz]

a'_ ,_o ,_o _ ,_ooo ' = _z]

Fig. 9. Amplification of a negistor

for two cases: flk=--l, and

_k = - 0.9

[NI
4

:3

Fig. 10. Sections of a negistor and

the structure of equilizers

Arc converter

O._---_r i'11111111 i-@l i t I I I-I-"

It can be noted that, for the latter case, in a band up to 6400 Hz, the

error brought about by the substitution of the coefficient flk =-- 0.9 for

lk----1 does not exceed ± 0.1 N. The correction of the plot Klk by

means of a decrease in the coefficient ik is the simplest manner of cor-

rection. The error can be considerably lowered if a more complicated

correction is applied to the frequency pattern for the conversion coef-

ficient ilk. In order to obtain the optimal solution, we should tend to have

I_kl _ 1 in the amplification band, and beyond the amplification band

the modulus of the coefficient tk should decrease rapidly in the range up

to the frequency o_ for which Re lk changes its sign from a minus to a

plus. We are not interested in the further part of the characteristic of lk

coefficient, since it exerts no influence on the stability of the system.

A section of the negistor, and the structures of the two-poles Z and

Z , are shown in Fig. 10. The values of the elements of these two-poles

are calculated on the basis of Formulae (21) with the assumption that

Z a = lR,

1

Zb = I(G + SC) '

(61)
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where R, C, O are unit parameters of the long line and I is the length of

the long linein kilometers.

Fig.II.Delaying long line

5. FINAL REMARKS

The method presented in the paper can be used, further, in the

design of a delaying four-pole. The transfer function of an ideal delaying

four-pole takes the form of the exponential function

K (s) = e-_s (62)

where _1is the parameter possessing the dimension of time, and determin-

ing the delay brought about by the four-pole.

Assuming that the wave impedances of a delaying four-pole are
real and equal to R

and that

R -_ }/_ Z b , (63)

fZ ax---- _-b _-)_S.

we shall obtain from Eqs. (63) and (64)

(64)

Z a = ;tRs = Ls, (65)

where

and

L = )_R, (66)

R 1

Zb- )_s-- Cs' (67)
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where
i

C = _-. , (68)

According to the relations (65) and (67), the impedance Za is the in-

ductivity, and the impedance Zb -- the capacity. The values of the induc-

tivity L and the capacity C are given by Formulae (66) and (68), respec-

tively.

The diagrams shown in Fig. 3 determine the structure of the two-

poles Z1 and Z2 of a lattice four-pole. The values of the particular

elements of these two-poles are calculated from Eqs. (21), with the as-
1 3 1 1

sumptions that a0 = 1, al = _-, as = 28' as = 84' a4- 1680"

The degree of accuracy in the realization of a delaying four-pole can

be increased several times, if we connect a few or several lattice sections

into a chain. In the case of a system with N sections, the inductivity L

and the capacity C may be calculated from the formulae

d. )_ 1 (69)
L= -N R, C=-N-- R .

The basic diagram of an N-section delaying four-pole designed by the

method described is shown in Fig. 11.
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